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ABSTRACT METHODS RESULTS CONCLUSIONS

Cancer is a complex and dynamic disease characterized by A mechanistic ADC module was developed, incorporating physiologically based The integrated individual DAR model (IDM) accurately represented the By integrating ADC mechanistic modeling with an I-O QSP platform,
intricate interactions between tumor cells and various other pharmacokinetic models for ADC components (antibody and payload), and physiological distribution of various ADC states, soluble antigens, and this work establishes a versatile platform for virtual clinical trial design.
cell types—particularly immune cells—within the tumor soluble antigen and antibody-molecule interaction dynamics across plasma, payloads within plasma and the TME, both extracellularly and Future studies will explore extracellular payload release,
microenvironment (TME). Effective treatment remains peripheral tissues, and the tumor microenvironment (TME). The module intracellularly. Comparative analysis revealed that the average DAR model immunomodulatory effects of ADCs [12], and patient-specific virtual
challenging due to limitations in drug delivery and the simulates antibody-antigen monovalent and bivalent binding, internalization, (ADM) recapitulates key outcomes of the individual DAR model—such as cohort calibration for indications such as breast or lung cancer. It also
: : : intracellular payload cleavage, payload and intracellular target binding, and plasma ADCs/payload levels, intracellular payload concentrations, and can be adapted to model specific permeability of payloads and new
evolutionary nature of tumor cell drug resistance, wherein : : : ) o : : ] , . :
I , , - biological nath cancer cell death in the TME. Two drug-to-antibody ratio (DAR) models were tumor growth dynamics—with high fidelity under physiological MoAs of payloads for ADCs. The platform’s capability to simulate
celis acquire mu.tat1ons UF SRS DO Z (G2, Pl US implemented: (1) an individual DAR model, tracking payload deconjugation conditions. This parity suggests the average DAR model can simplify ADC combination therapies could help streamline early clinical development,
evade therapeutic agents. kinetics across ADC variants [11], and (ii) an analytically derived average DAR QSP workflows without compromising accuracy. Furthermore, the reduce trial costs, and identify optimal dosing regimens.
Antibody-drug conjugates (ADCs) have emerged as a model to simplify computational complexity. Both models were embedded into latform considered immune modulation in the TME during ADC/I-O . .
LU COnIE . g | plify comput plexity. bBC . platiorm ¢ mune m . g Virtual population
promising modality in oncology, offering targeted delivery an [-O QSP plgtform, which model§ the cancer—1mm1.1n1t.y cycle.and the .TME f:ombmatlono therapy, h1gh11ght1ng synergies between payload-induced In the simulation results of the integrated QSP I-O & ADCs platform, a single
of cytotoxic payloads via the specificity of monoclonal cancer 1m.mun1ty.subcycle [219 and Iminune checkpoint interactions. Th.ls mpdel immunogenic cell death and immune activation. parameter set—representing one virtual patient—was used for demonstration
antibodies. To overcome drug resistance and mitigate off- f;atifi?slg;;ﬁ?tg)z a;ﬁzv(semmlélﬁlin gfn‘?ﬁgi;?%?gherapy and combination ADC states dynamics purp(iste.s' T&Sltlpp()trltl Chniﬁal Frilal qesign’ditdi,s essential t];’. ?teveTk}’lP a Virgllal
. . : : : : : - 2., . , _ , : — : _ opulation that captures siological and disease variability. This enables
target toxicity, ADCs are increasingly being combined with 5 S S . Figure 7 presents the simulation results of bivalent binding dynamics for antibody- pope L CAPIIESS DIV VS : : Y -
1 h , hoasi . I-O QSP framework q ) e TOM £ k difF ¥ modeling of inter-individual differences in patient responses and calibration
complementary therapies such as immune checkpoint - ) (&) sh | £1.0 OSP platform I dmg COItlJutgateS Wl}tl XlDtCe ; flamve)f 8aCTOSIS ; efentl:f)ml?artf?etntls- ?;t 1S against observed clinical variability [11].
inhibitors, chemotherapy, and small-molecule inhibitors [1]. 1gure shows overview of 1- platiorm (¢€.g., compartments, cmonstration, eac molecule carties & payloads, resuliing in a total o s : :
: : L distributions); (B) shows the schematic diagram of the TME compartment as distinct conjugation states. The distribution of these individual states is governed by Su]:h a framev;rtqulalllovys for pre.‘hcuoﬁl of Oll_lt‘?onllzs ?CI;OSI‘S d};/e(:;'se patlenlt
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Pharmacology (QSP) platform for immuno-oncology (I-O) eliminated through immune-mediated mechanisms and chemotherapy. Tumor- TRy | ; | QSgP platform P PHRS 8 Y e
and ADCs. This virtual modeling framework simulates derived debris activates antigen-presenting cells (APCs), which then migrate to the | | : e B nterleukin 10 o L —
tumor growth dynamics and treatment responses to ADC lymph nodes to initiate T cell activation. These activated T cells subsequently return * l l ‘ ‘ \ ‘ ‘ l l ‘ ‘ ‘ k l ' .
monotherapy and combination regimens involving I-O to the tumor site to execute targeted cytotoxic responses against cancer cells. _ ‘\ 1‘\ b\ b\ k\ &\ b\ 5\ ‘ L b\ &\ !’\
agents (e.g., checkpoint inhibitors) and chemotherapy. The — — —
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representations of key immuno-oncology interventions, ot o [ e | e [ DSt et = Figure 7: All individual ADC state dynamics of individual DAR model in e
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The 1ntegrat.ed ADC module models the pharmacokinetics L2, LAG3 "~ Y0 TGFB, IL10, PD1-PDLY, LAGS gﬁmt;g;on . Figure 8 shows the comparison results of total bivalent binding ADC of IDM
for both antibody and payload components, as well as ' (which is corresponding to results of Figure 7) and ADM. As mentioned in the

antigen expression, target engagement, and molecular method section of average DAR model, we defined--the ADC state of ADM is
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interactions across plasma, peripheral tissues, and the TME. \ ~ LAG3 equal to total of-Varlou.s ADC states in plasrpa e}nd peripheral compartmeqts.
\\/t} :’F?\'Ia“ZTart\:gg oo Therefore, the simulations of analytical derivation should be consistent with our
i, i in sili \. v, , : : : ) ) .
The QSP I-O & ADC:s platform provides a robust in silico IL6/10, TGFB, CCL2 prior assumption. Figure 8 demonstrates the consistent simulation results of IDM
environment for simulating complex tumor dynamics under | JE=e Q L et | and ADM, which is subject to our prior method assumptions.
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Figure 8: Comparison of total ADC states dynamics between individual DAR model

In the demo simulation of this platform, we

: . . i - Di i i i - i i ithi d average DAR model : °
Anti _ n tes (AD ner Figure 2: Diagrams illustrating overview of I-O platform and key interactions within the TME an( . . o . assumed that the conjugated antibody component
body-drug Cf) jugates ( Cs) §y Crglze t.ar.geted | This figure depicts A) overview of the I-O platform and (B) the interaction dynamics between cancer This figure presents a summary of different bivalent binding ADC states dynamics of of ADCs serves solely as a delivery vehicle for
Chemotherapy Wlth IIlOIlOClOIlal antlbOdy pI'GClSlOIl, Whlle cells and immune CCHS, as well as the mechanisms of anti-cancer treatments such as ICIs and IDM compared to the Corresponding total ADCs of ADM in both plasma and the tumor the payload without Contributing direCtly to
immuno-oncology (I-O) therapies harness the immune ghemoherapy, microenvironment (TME). cancer cell killing. However, recent studies
system to combat cancer. Combining these modalities holds " . FADC I Payload dynamics in plasma and TME suggest that the antibody backbone of ADCs can
promise for overcoming resistance and enhancing ntegration o | mode Figure 9 compares payload concentrations between IDM and ADM in plasma and anagz F(iy—ri:lc elptorlsl and trzgger(illt)llé({)(;}f[—lz]
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therapeutic efficacy in oncology [3]. However, optimizing c “W Do ool ) Figure 3: Compartment-Level TME' As descn.b ed in the metho@s section, the DAR release Process was n.mdeled Figure 15: Diagram of Thri)s is plausible g?vengthg[ many antibodies
such combinations can be facilitated by a mechanistic aE . L ot gOdel anddADC ic Effect zxsflerﬁ aesgil;lle{n;zldg?i]skzzied eecr?clllégf ztflci);ld?ﬂg:figg f;;rz:lytlcal dertvation of the ADCC/ADCP by conjugated used in ADCs possess inherent immune-
model to predict pharmacokinetic-pharmacodynamic (PK- B = >A : Stroma e armacociynamic LHeCts . g - P . . ' antibody. The figure shows the stimulatory properties. Functionally, this

, , , , L @ Dendriic ce A". %, | This figure illustrates the Simulation results show that ADM effectively recapitulates the payload levels conjugated antibody of ADCs may resembles a combination therapy involving both
PD) interactions. In this work, we integrate a mechanistic | wwenwie 7 L, 0K, secwei = | compartment-level model of ADC . . . o . » ,
. T { Tht w ) @ N YF memsiemion s ! . observed in IDM across compartments. This approach significantly simplifies also induce additional effects. payload-driven ADCs and ICIs.
ADC model mnto an I-O quantitative systems pharmacology | ; \ —— < %rllld Its p he;i'mellclzolgiflpam}c effetCtS' model implementation, especially for ADCs with high DAR values.
(Q SP) platform and aim to deSign Virtual Clinical trials for | G \;,‘L/{ € overall cell-killing 1m1')a.c Payload conc. in plasma Payload conc. in TME (exlracellula; - Payload conc. in TME (inlracellula; — Permeable payload VS non_permeable payload
o . activated Th (@] Ny results from both ADC activity and
_ T N/ N . . . . .
ADC/I-O combination therapies. acivtes oL (@ roc N 1 the natural immune response, such In the demo simulation of this platform, we assumed that payload is permeable.
WHY IS THIS TOPIC IMPORTANT? — )\ petera ) as that from CD8+ T cells. ||| | i | I - | I || That means the extracellular payload (e.g., flux from plasma, released from
s * * | * [ . . . . . .
— . . A mechanistic ADC module was developed and integrated into the I-O QSP platform. cancer cell apopt0.81s which contains internalized ADCs) can enter surrounding
Combination therapies offer several potential advantages Figure 3 and Figure 4 show the schematic diagram of ADC PD in TME and the detailed cancer cells and kill them. o
over monotherapy, including enhanced efficacy, reduced PK dynamics of ADC components. N N N T}.ns strategy enhances j[he overall efﬁcacy of th@ ADCs, espe(:lal.ly in tumors
resistance, synergistic effects, and the potential for The model captures key molecular interactions, including specific binding between Figure 9: Comparison of Payload Concentration Dynamics Between Individual ;{mh hetero}glg.eneous ar?igen elx PIESSION, by cr?ailggla brooader anti-cancer iffect.
personalized treatment strategies. A notable example is the antibodies and both soluble and membrane-bound antigens, as well as the binding of DAR Model and Average DAR Model _ o owever, this p crmeabl ity also requires carciul balancing, as it can contribute
o 1 . : deconjugated payloads to intracellular targets. Formation of the payload-target complex This figure presents simulation outcomes illustrating the payload concentration in to off-target toxicity if the payload leaks into non-cancerous cells. Therefore,
combination of ADCs with immunotherapy, which has itintes evtotoxic activity. leading to cancer cell death plasma and the tumor microenvironment (TME) for both the Individual DAR Model dose optimization is important.
emerged as a promising approach 1In cancer treatment [4] Y _ _y’ & _. - (IDM) and the Average DAR Model (ADM). 2 | positive Some ADCs may use non-
Importantly, the integration assumes that the payload is membrane-permeable, enabling / " average DAR dynamic inplasma ) i \ “ permeable payload. This limits
Immunotherapeutic agents, particularly immune checkpoint diffusion from the targeted cancer cell to neighboring cells. This mechanism induces a A0Sl e Figure 10: average DAR dyl}amlcg c . the bystander effect, but makes it
S T : : « »» - - e . e 1  lLhe figure demonstrates the simulation result e\ bttt . . . .
inhibitors (ICIs), are effective in stimulating anti-tumor bystander effect”, thereby enhancing therapeutic reach within heterogeneous tumor . L ideal for targeting antigens with
. o o regions of average DAR dynamics. It periodically high : i off
immune responses. However, their clinical application can be glons. AR " changes which corresponds the administration @ 1gh expression to minimize off-
.. : : ( T \ py ' Legend | : . : target toxicity. In the platform,
limited by challenges such as low response rates in certain plasital ¢ /ﬁm o D et &\\ oo dose. Given large injection dose amount (in — modeling pavload-specific
atient populations, difficulties in measuring efficac . \ ) R £\, —  plasma) compared with TME, average DAR s — P P
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endpon[l;s], and the occurrence of immune-related adverse | ol | f X\ F—— \ S — / effect, Permeable payload can induce death of ?}?d calm be taChlevedt by adjusting
events [J]. : I ’ ) N . ) surrounding antigen-negative cancer cells. C relcvant permeation
™ bination of ADCs and ICIs 1 €2 "\;? 4 Y4 O L ! X7 N/ Antigen, target and tumor dynamics parameters.
€ combinaton o | S an S ceverages | - L | Y ARt 4 A antger Figure 11 shows simulation results for soluble antigen, target, and target-payload New MoAs of payloads for ADCs
complementary mechanisms of action—ADCs deliver 4 + \ j O raeas complex in plasma and TME across two DAR models. In the MoA of this demo In the d SRRTOTAORI Y 0 As of pavload is to bind with
cytotoxic payloads directly to tumor cells, while ICIs activate \ "_"?5‘/) @ e ADC, the intracellular payload binds to its target molecule, forming a payload- In the demo simulation of this platform, the MoAs of payload 1s to bind wit
immune effector functions—resulting in a multifaceted — \ Y- target complex. Upon cancer cell apoptosis, membrane antigen, target, and target- 1ntrace11.ular target and format payload-target complex, Increasing cancer 9611
theraneutic effect. This dual anoroach not onlv enhances anti Y4 payload complex can be released into the extracellular TME. The results apoptosis rate. New types ofpgyloads for ADCs include immune-modulating
peutic: ' Pproac ¥ il Y4 O e demonstrate consistent behavior between the two DAR models, supporting the agents (like TLR agonists), radiometals for therapy, RNA
tumor actlv.lty but also holds potential for overcoming tumor ionra K 3 o e robustness of the implementation. | inhibitors, protein degraders,
he terogenel ty. \ Yy (\ (\ antigen in plasma antigen in TME target in TME CD8 T cell and the incorporation Of
Figure 1 illustrates the pharmacodynamic interplay between Figure 4: ADC Pharmacokinetics and Mechanism of Action Diagram | (\ m (\ Ir.lult.iple dive.rse payloads. This
ADCs and ICIs, highlighting how their combined effects can This figure illustrates the pharmacokinetic behavior of ADCs within plasma, i 51gn1ﬁcaptly 1ncreases model
modulate the tumor microenvironment and improve peripheral tissues, and the tumor microenvironment (TME). It also depicts the complexity as it triggers other
, P interactions between the ADC, antigen, and target-payload. ) ) } / coateel  type of cells and especially for
therapeutic outcomes [3]. — APCs active APCs immunity systems (e.g., Figure
/ N V- v \ Two drug-to-antibody ratio (DAR) models eSS Figure 17: Inmune-modulating ADCs 17). It requires complex
s Ly e | a | || L The figure shows the immune-modulating ADCs ~ mechanism driven model
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directly to tumor cells dt , depending on the specific ADCs behavior across both DAR models.
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