
Cancer is a complex and dynamic disease characterized by 

intricate interactions between tumor cells and various other 

cell types—particularly immune cells—within the tumor 

microenvironment (TME). Effective treatment remains 

challenging due to limitations in drug delivery and the 

evolutionary nature of tumor cell drug resistance, wherein 

cells acquire mutations or rewire biological pathways to 

evade therapeutic agents.

Antibody-drug conjugates (ADCs) have emerged as a 

promising modality in oncology, offering targeted delivery 

of cytotoxic payloads via the specificity of monoclonal 

antibodies. To overcome drug resistance and mitigate off-

target toxicity, ADCs are increasingly being combined with 

complementary therapies such as immune checkpoint 

inhibitors, chemotherapy, and small-molecule inhibitors [1].

In this work, we introduce a Quantitative Systems 

Pharmacology (QSP) platform for immuno-oncology (I-O) 

and ADCs. This virtual modeling framework simulates 

tumor growth dynamics and treatment responses to ADC 

monotherapy and combination regimens involving I-O 

agents (e.g., checkpoint inhibitors) and chemotherapy. The 

I-O QSP platform captures physiological tumor progression 

and immune cell interactions within a chemokine- and 

cytokine-rich TME, structured around the cancer-immunity 

cycle and its subcycles [2]. It also incorporates mechanistic 

representations of key immuno-oncology interventions, 

including anti-PD1/PDL1, anti-LAG3, anti-TGFβ, and anti-

CTLA4 therapies.

The integrated ADC module models the pharmacokinetics 

for both antibody and payload components, as well as 

antigen expression, target engagement, and molecular 

interactions across plasma, peripheral tissues, and the TME.

The QSP I-O & ADCs platform provides a robust in silico 

environment for simulating complex tumor dynamics under 

various therapeutic interventions. It enables strategic 

optimization of combination therapies and supports rational 

design of clinical trials.

OBJECTIVE

A mechanistic ADC module was developed, incorporating physiologically based 

pharmacokinetic models for ADC components (antibody and payload), and 

soluble antigen and antibody-molecule interaction dynamics across plasma, 

peripheral tissues, and the tumor microenvironment (TME). The module 

simulates antibody-antigen monovalent and bivalent binding, internalization, 

intracellular payload cleavage, payload and intracellular target binding, and 

cancer cell death in the TME. Two drug-to-antibody ratio (DAR) models were 

implemented: (i) an individual DAR model, tracking payload deconjugation 

kinetics across ADC variants [11], and (ii) an analytically derived average DAR 

model to simplify computational complexity. Both models were embedded into 

an I-O QSP platform, which models the cancer-immunity cycle and the TME 

cancer immunity subcycle [2], and immune checkpoint interactions. This model 

platform integration allows simulation of ADC monotherapy and combination 

regimens with I-O agents (e.g., checkpoint inhibitors).

METHODS

The integrated individual DAR model (IDM) accurately represented the 

physiological distribution of various ADC states, soluble antigens, and 

payloads within plasma and the TME, both extracellularly and 

intracellularly. Comparative analysis revealed that the average DAR model 

(ADM) recapitulates key outcomes of the individual DAR model—such as 

plasma ADCs/payload levels, intracellular payload concentrations, and 

tumor growth dynamics—with high fidelity under physiological 

conditions. This parity suggests the average DAR model can simplify ADC 

QSP workflows without compromising accuracy. Furthermore, the 

platform considered immune modulation in the TME during ADC/I-O 

combination therapy, highlighting synergies between payload-induced 

immunogenic cell death and immune activation.

RESULTS CONCLUSIONS

By integrating ADC mechanistic modeling with an I-O QSP platform, 

this work establishes a versatile platform for virtual clinical trial design. 

Future studies will explore extracellular payload release, 

immunomodulatory effects of ADCs [12], and patient-specific virtual 

cohort calibration for indications such as breast or lung cancer. It also 

can be adapted to model specific permeability of payloads and new 

MoAs of payloads for ADCs. The platform’s capability to simulate 

combination therapies could help streamline early clinical development, 

reduce trial costs, and identify optimal dosing regimens.
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Antibody-drug conjugates (ADCs) synergize targeted 

chemotherapy with monoclonal antibody precision, while 

immuno-oncology (I-O) therapies harness the immune 

system to combat cancer. Combining these modalities holds 

promise for overcoming resistance and enhancing 

therapeutic efficacy in oncology [3]. However, optimizing 

such combinations can be facilitated by a mechanistic 

model to predict pharmacokinetic-pharmacodynamic (PK-

PD) interactions. In this work, we integrate a mechanistic 

ADC model into an I-O quantitative systems pharmacology 

(QSP) platform and aim to design virtual clinical trials for 

ADC/I-O combination therapies.
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ABSTRACT

WHY IS THIS TOPIC IMPORTANT?

Combination therapies offer several potential advantages 

over monotherapy, including enhanced efficacy, reduced 

resistance, synergistic effects, and the potential for 

personalized treatment strategies. A notable example is the 

combination of ADCs with immunotherapy, which has 

emerged as a promising approach in cancer treatment [4].

Immunotherapeutic agents, particularly immune checkpoint 

inhibitors (ICIs), are effective in stimulating anti-tumor 

immune responses. However, their clinical application can be 

limited by challenges such as low response rates in certain 

patient populations, difficulties in measuring efficacy 

endpoints, and the occurrence of immune-related adverse 

events [5].

The combination of ADCs and ICIs leverages 

complementary mechanisms of action—ADCs deliver 

cytotoxic payloads directly to tumor cells, while ICIs activate 

immune effector functions—resulting in a multifaceted 

therapeutic effect. This dual approach not only enhances anti-

tumor activity but also holds potential for overcoming tumor 

heterogeneity.

Figure 1 illustrates the pharmacodynamic interplay between 

ADCs and ICIs, highlighting how their combined effects can 

modulate the tumor microenvironment and improve 

therapeutic outcomes [3].

QSP I-O & ADCs: Integration of an antibody-drug conjugates mechanistic model 
into an immuno‐oncology quantitative systems pharmacology platform

Quantitative Systems Pharmacology (QSP) modeling offers 

transformative advantages for optimizing cancer combination 

therapies by enabling simulation of complex biological 

interactions and virtual testing of therapeutic strategies. Rather 

than relying solely on empirical “trial-and-error” approaches, 

QSP provides a mechanistic, quantitative, and systems-level 

understanding of drug actions within the human biological 

context. Key benefits include:

➢ Prediction of synergistic effects in drug combinations [6]

➢ Optimization of dosing and scheduling to maximize 

efficacy and minimize toxicity [6]

➢ Incorporation of tumor and patient heterogeneity to support 

personalized medicine [7]

➢ Evaluation of resistance mechanisms and exploration of 

counterstrategies [8]

➢ Exploration of predictive biomarkers to guide patient 

selection and stratification [9]

➢ Acceleration of drug development timelines and reduction 

of associated costs [10]
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Integration of ADC model

Figure 4: ADC Pharmacokinetics and Mechanism of Action Diagram

This figure illustrates the pharmacokinetic behavior of ADCs within plasma, 

peripheral tissues, and the tumor microenvironment (TME). It also depicts the 

interactions between the ADC, antigen, and target-payload.

Figure 6: Diagram of the Average 

DAR Model

This figure illustrates the average 

DAR model kinetics for payload 

deconjugation from ADC.
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Figure 5: Diagram of the Individual DAR Model

This figure illustrates the kinetics of ADCs and the 

process of payload deconjugation.

We developed a sequential payload 

deconjugation model to describe the 

pharmacokinetics of ADCs in 

plasma and the dynamics of 

payload release within the 

intracellular tumor 

microenvironment (TME). The 

model assumes a consistent 

deconjugation rate across all ADC 

states, ranging from fully 

conjugated (N payloads) to 

completely deconjugated (0 

payload). While this is a 

generalized approach, the actual 

process could be more complex 

depending on the specific ADCs 

and payload types involved. 

Adjustments or enhancements to 

the deconjugation parameters can 

be made as needed.

Figure 2 (A) shows overview of I-O QSP platform (e.g., compartments, 

distributions); (B) shows the schematic diagram of the TME compartment as 

modeled in the I-O QSP disease platform. Within this framework, cancer cells are 

eliminated through immune-mediated mechanisms and chemotherapy. Tumor-

derived debris activates antigen-presenting cells (APCs), which then migrate to the 

lymph nodes to initiate T cell activation. These activated T cells subsequently return 

to the tumor site to execute targeted cytotoxic responses against cancer cells.

A mechanistic ADC module was developed and integrated into the I-O QSP platform. 

Figure 3 and Figure 4 show the schematic diagram of ADC PD in TME and the detailed 

PK dynamics of ADC components. 

The model captures key molecular interactions, including specific binding between 

antibodies and both soluble and membrane-bound antigens, as well as the binding of 

deconjugated payloads to intracellular targets. Formation of the payload-target complex 

initiates cytotoxic activity, leading to cancer cell death.

Importantly, the integration assumes that the payload is membrane-permeable, enabling 

diffusion from the targeted cancer cell to neighboring cells. This mechanism induces a 

“bystander effect”, thereby enhancing therapeutic reach within heterogeneous tumor 

regions.

We subsequently integrated an additional payload deconjugation model, referred to as 

the “Average Drug-to-Antibody Ratio (DAR)” model. Figure 6 illustrates the underlying 

assumptions and the model schematic. In this framework, the total amount of ADCs 

across plasma and peripheral compartments—and consequently the total payload—is 

computed as the sum of conjugated payloads multiplied by the respective quantities of 

each ADC state.

Through analytical derivation, we demonstrated that the kinetics of total ADCs and 

payload are independent of the distribution across individual ADC states. It is important 

to note that this result is contingent upon the assumption of a uniform payload 

deconjugation rate across all ADC species.

ADC states dynamics

Payload dynamics in plasma and TME

Antigen, target and tumor dynamics

Virtual population

ADCC/ADCP induced by conjugated antibody

Permeable payload vs non-permeable payload

In the demo simulation of this platform, we assumed that payload is permeable. 

That means the extracellular payload (e.g., flux from plasma, released from 

cancer cell apoptosis which contains internalized ADCs) can enter surrounding 

cancer cells and kill them. 

This strategy enhances the overall efficacy of the ADCs, especially in tumors 

with heterogeneous antigen expression, by creating a broader anti-cancer effect. 

However, this permeability also requires careful balancing, as it can contribute 

to off-target toxicity if the payload leaks into non-cancerous cells. Therefore, 

dose optimization is important. 

New MoAs of payloads for ADCs

In the simulation results of the integrated QSP I-O & ADCs platform, a single 

parameter set—representing one virtual patient—was used for demonstration 

purposes. To support clinical trial design, it is essential to develop a virtual 

population that captures physiological and disease variability. This enables 

modeling of inter-individual differences in patient responses and calibration 

against observed clinical variability [11].

Such a framework allows for prediction of outcomes across diverse patient 

subgroups, particularly in scenarios where clinical data is limited or complex. 

Figure 14 illustrates example sampling outcomes generated by the integrated 

QSP platform.

Figure 7 presents the simulation results of bivalent binding dynamics for antibody-

drug conjugates within the IDM framework across different compartments. In this 

demonstration, each ADC molecule carries 8 payloads, resulting in a total of 9 

distinct conjugation states. The distribution of these individual states is governed by 

the payload deconjugation kinetics and evolves over time.

Figure 8 shows the comparison results of total bivalent binding ADC of IDM 

(which is corresponding to results of Figure 7) and ADM. As mentioned in the 

method section of average DAR model, we defined--the ADC state of ADM is 

equal to total of various ADC states in plasma and peripheral compartments. 

Therefore, the simulations of analytical derivation should be consistent with our 

prior assumption. Figure 8 demonstrates the consistent simulation results of IDM 

and ADM, which is subject to our prior method assumptions. 

Figure 9 compares payload concentrations between IDM and ADM in plasma and 

TME. As described in the methods section, the DAR release process was modeled 

using a sequential payload deconjugation approach. The analytical derivation of the 

average DAR model is independent of individual ADC states.

Simulation results show that ADM effectively recapitulates the payload levels 

observed in IDM across compartments. This approach significantly simplifies 

model implementation, especially for ADCs with high DAR values.

Figure 11 shows simulation results for soluble antigen, target, and target-payload 

complex in plasma and TME across two DAR models. In the MoA of this demo 

ADC, the intracellular payload binds to its target molecule, forming a payload-

target complex. Upon cancer cell apoptosis, membrane antigen, target, and target-

payload complex can be released into the extracellular TME. The results 

demonstrate consistent behavior between the two DAR models, supporting the 

robustness of the implementation.

To model the molecular-level binding kinetics of ADC-antigen and payload-target 

interactions, we explicitly defined ODEs for all molecular species based on their 

amounts. This means that the quantities of membrane antigen and intracellular 

target are proportionally linked to cancer cell dynamics. Figure 12 demonstrates 

mass balance for membrane antigen and intracellular target, showing consistent 

behavior across both DAR models.

Figure 13 provides example results of cell- and tumor-level dynamics under the two 

DAR models. In our platform, tumor volume is composed of the volumes of 

various cell types (e.g., cancer cells, stroma, Tregs), as well as extracellular, 

vascular, and interstitial spaces. From the calculated tumor volume, lesion-level 

metrics such as SLD and relative SLD change can be derived—useful for 

classifying clinical response rates.

Figure 16: Permeable payload induces bystander 

effect. Permeable payload can induce death of 

surrounding antigen-negative cancer cells.

Figure 17: Immune-modulating ADCs

The figure shows the immune-modulating ADCs 

can activate APCs and then improve T cell 

activation. 

Figure 15: Diagram of 

ADCC/ADCP by conjugated 

antibody. The figure shows the 

conjugated antibody of ADCs may 

also induce additional effects.  

In the demo simulation of this platform, we 

assumed that the conjugated antibody component 

of ADCs serves solely as a delivery vehicle for 

the payload, without contributing directly to 

cancer cell killing. However, recent studies 

suggest that the antibody backbone of ADCs can 

engage Fcγ-receptors and trigger antibody-

dependent cellular phagocytosis (ADCP) [12]. 

This is plausible, given that many antibodies 

used in ADCs possess inherent immune-

stimulatory properties. Functionally, this 

resembles a combination therapy involving both 

payload-driven ADCs and ICIs.

Some ADCs may use non-

permeable payload. This limits 

the bystander effect, but makes it 

ideal for targeting antigens with 

high expression to minimize off-

target toxicity. In the platform, 

modeling payload-specific 

permeability is straightforward 

and can be achieved by adjusting 

the relevant permeation 

parameters.

inhibitors, protein degraders, 

and the incorporation of 

multiple diverse payloads. This 

significantly increases model 

complexity as it triggers other 

type of cells and especially for 

immunity systems (e.g., Figure 

17). It requires complex 

mechanism driven model 

platform for capturing the 

specific MoAs of payloads. 

In the demo simulation of this platform, the MoAs of payload is to bind with 

intracellular target and format payload-target complex, increasing cancer cell 

apoptosis rate. New types of payloads for ADCs include immune-modulating 

agents (like TLR agonists), radiometals for therapy, RNA    

Figure 14: Sampled virtual patient examples

This figure illustrates sample simulation results across various molecule, cell and 

tumor scales, generated by selecting particular parameter configurations.

Figure 10: average DAR dynamics

The figure demonstrates the simulation result 

of average DAR dynamics. It periodically 

changes which corresponds the administration 

dose. Given large injection dose amount (in 

plasma) compared with TME, average DAR is 

reset almost the original DAR ratio.   

Figure 12: Membrane antigen 

and target mass balance 

dynamics

(A) indicates the membrane 

antigen amount per cancer cell 

and (B) represents the 

intracellular target (and target-

payload complex) amount per 

cancer cell.
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Figure 1: Schematic diagram of combing of ICIs and ADCs

The diagram illustrates the enhanced therapeutic efficacy of combining 

ICIs and ADCs in cancer therapy. ICIs boost the immune system's ability 

to target and kill tumor cells, while ADCs deliver cytotoxic agents 

directly to tumor cells.

Reused [3] under a Creative Commons Attribution 4.0 International 

License (no change was made).

Figure 9: Comparison of Payload Concentration Dynamics Between Individual 

DAR Model and Average DAR Model

This figure presents simulation outcomes illustrating the payload concentration in 

plasma and the tumor microenvironment (TME) for both the Individual DAR Model 

(IDM) and the Average DAR Model (ADM).

Figure 11: Comparison of dynamics for antigen, target, and target-payload 

complexes in individual and average DAR models

This figure presents simulation outcomes for soluble antigen, target, and the payload-

target complex.

Figure 8: Comparison of total ADC states dynamics between individual DAR model 

and average DAR model

This figure presents a summary of different bivalent binding ADC states dynamics of 

IDM compared to the corresponding total ADCs of ADM in both plasma and the tumor 

microenvironment (TME).

Figure 7: All individual ADC state dynamics of individual DAR model in 

plasma and TME

The figure shows various bivalent binding ADC dynamics of IDM in plasma 

and TME. (Left: all duration time, Right: ~ 1 cycle time of left figure.

Figure 3: Compartment-Level 

Model and ADC 

Pharmacodynamic Effects

This figure illustrates the 

compartment-level model of ADC 

and its pharmacodynamic effects. 

The overall cell-killing impact 

results from both ADC activity and 

the natural immune response, such 

as that from CD8+ T cells.

Figure 13: Comparison of tumor growth dynamics of individual DAR model and 

average DAR model

The figure represents cancer cell population, tumor volume and relative sum of 

longest diameter (SLD) change dynamics. 

Figure 2: Diagrams illustrating overview of I-O platform and key interactions within the TME

This figure depicts A) overview of the I-O platform and (B) the interaction dynamics between cancer 

cells and immune cells, as well as the mechanisms of anti-cancer treatments such as ICIs and 

chemotherapy.
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