

Exposure–response analysis of datopotamab deruxtecan (Dato-DXd) in combination with pembrolizumab with or without platinum chemotherapy in patients with advanced or metastatic non-small cell lung cancer

Jaydeep Sinha¹, Todd Yoder², Tim Waterhouse², Andrew Tredennick², Edward Pan³, Hong Yang¹, Tushar Garimella¹, Ying Hong¹

¹Quantitative Clinical Pharmacology, Daiichi Sankyo, Inc., Basking Ridge, NJ, USA; ²Metrum Research Group, Boston, MA, USA; ³Global Oncology Clinical Development, Daiichi Sankyo, Inc., Basking Ridge, NJ, USA

BACKGROUND

- Datopotamab deruxtecan (Dato-DXd) is a TROP2-directed ADC. It has received regulatory approval for the treatment of adult patients with previously treated, unresectable or metastatic HR+/HER2- breast cancer, and for patients with previously treated metastatic NSCLC harboring EGFR-activating mutations. The cytotoxic payload (DXd) is an exatecan derivative and a potent DNA topoisomerase I inhibitor. Once released inside target tumor cells, the payload induces DNA damage and apoptosis of tumor cells
- Dato-DXd demonstrated prolonged PFS as monotherapy compared to docetaxel in previously treated patients with a/m NSCLC lacking actionable genomic alterations in the TROPION-Lung01 trial.¹ It is currently being further evaluated in phase 3 studies as a first-line combination therapy with anti-PD-1 with or without platinum-based chemotherapy in patients with a/m NSCLC
- TROPION-Lung02 is an ongoing phase 1b study evaluating Dato-DXd + pembrolizumab ± platinum chemotherapy in patients with a/m NSCLC without actionable genomic alterations. It has demonstrated encouraging antitumor activity and tolerable safety in 142 patients (first-line, second-line, and beyond) who received Dato-DXd at 4 or 6 mg/kg Q3W in combination with pembrolizumab (doublet) or pembrolizumab and platinum chemotherapy (triplet).^{2,3} Here we report the exposure–response analysis based on TROPION-Lung02 data

OBJECTIVES

- To characterize the exposure–response of Dato-DXd for tumor size (TS) response and best overall response of complete response or partial response in patients with NSCLC receiving the doublet or triplet regimen
- To assess the potential influence of the baseline patient characteristics and dosing regimen (i.e., doublet vs. triplet) on the antitumor response of Dato-DXd

METHODS

Population pharmacokinetics

- A previously developed population PK model⁴ was used to derive exposure metrics for Dato-DXd. Briefly, Dato-DXd PK was best described by a two-compartment model with parallel linear and nonlinear clearance. The DXd PK was modeled using the total elimination rate of Dato-DXd (incorporating time-dependent drug-to-antibody ratio decline) as input, with DXd disposition characterized by a one-compartment model with linear clearance

Exposure–response for tumor size

- Longitudinal TS data were used to develop a TGI model (Figure 1), in a nonlinear mixed-effects modeling framework using NONMEM 7.5. Both exposure-dependent (Eq. 1) and exposure-independent (Eq. 2) models were tested for the combined multiplicative drug effect component. The differential equation defining the TGI dynamics (Eq. 3) was solved to develop the closed-form Eq. 4, which was used for modeling purposes (using \$PRED) to ensure numerical stability
- Covariates were evaluated using a full model-based approach. Since all treatment arms included both Dato-DXd and pembrolizumab, informative priors (SPRIOR in the first order conditional estimation with interaction method) were used for E_{Dato} and E_{Pembro}

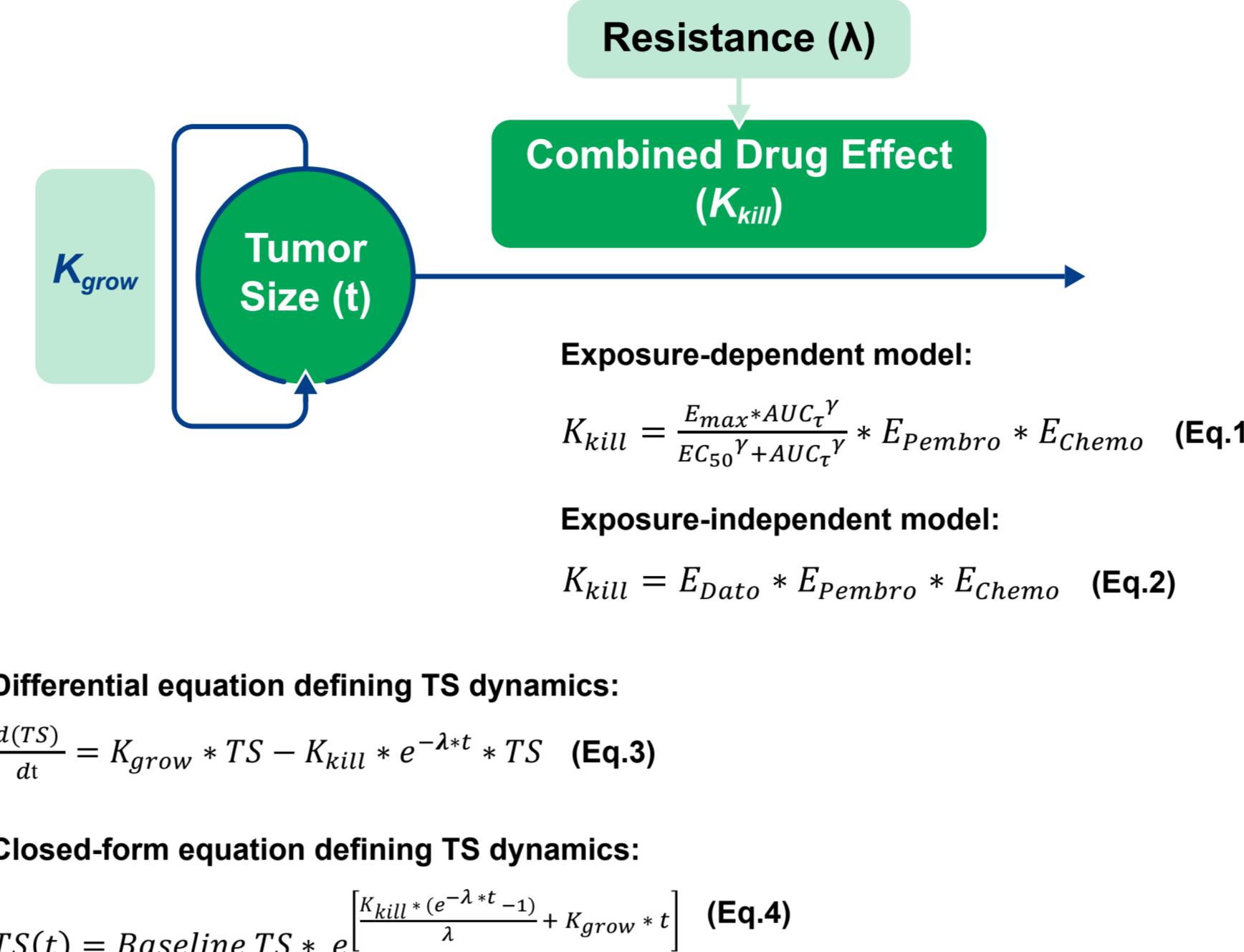
Exposure–response for BOR of CR/PR

- Logistic regression analysis was performed to characterize the probability of BOR being CR/PR (ORR). Competing models with several exposure metrics of cycle 1 (AUC₁, C_{max} , C_{min}) and exposure structures (linear, log-linear, E_{max} sigmoidal E_{max}) were evaluated for base model selection. A full modeling approach was used to estimate the covariate effects
- Model fitting was carried out in a Bayesian framework using weakly informative proper priors. Posterior samples were obtained using Markov Chain Monte Carlo sampling

RESULTS

Patient characteristics

- The TS dataset had 844 repeated post-baseline measurements of TS from 141 patients (out of 142) who also had corresponding baseline TS records. Among the 142 patients, 52 patients (36.6%) and 90 patients (63.4%) received the 4 mg/kg and 6 mg/kg dose of Dato-DXd, respectively; 70 patients (49.3%) and 72 patients (50.7%) received the doublet and triplet regimen, respectively; 96 patients (67.6%) and 46 patients (32.4%) had zero and 21 PLT, respectively
- Among the 46 patients who received ≥ 1 PLT, 18 patients (39.1%) had their last PLT with an immuno-oncology drug (LPIO). PD-L1 expression levels (locally tested) were <1% in 58 patients (40.8%), 1–49% in 52 patients (36.6%), $\geq 50\%$ in 31 patients (21.8%), and missing in 1 patient (0.7%)


Full models

- The exposure-dependent drug effect model accounting for Dato-DXd AUC₁ on TGI (Eq 1) had a convergence issue, possibly because of the saturation of the drug effect at the first exposure quartile. Therefore, the exposure-independent drug effect model (Eq. 2) was chosen to avoid over-parameterization (Table 1). The probability of BOR (CR/PR) was best predicted by a log-linear drug effect model with Dato-DXd AUC₁ (Table 2). Both models performed well upon visual comparison with the observed data (Figure 2)

Model inference

- Univariate analyses of the TGI and ORR model revealed that higher PD-L1 expression (1–49% and $\geq 50\%$), no PLT (i.e., treatment-naïve), or LPIO had an overall significant and positive influence on TS reduction and probability of BOR being CR/PR (Figure 3).
- The highest influence was seen in treatment-naïve patients, in whom the estimated median percent change in TS at nadir (%TS_{nadir}) was 21.5% [95% CI: 6.58%, 35.3%] and the odds ratio was 3.82 [95% CI: 1.37, 11.4]
- Dato-DXd exposure had an effect on ORR, as evident from the estimated odds ratio varying from 0.78 [95% CI: 0.358, 1.70] to 1.30 [95% CI: 0.567, 2.99] between the 5th and 95th percentiles of Dato-DXd AUC₁
- The triplet regimen achieved an ORR comparable to that of the doublet regimen (odds ratio: 0.822; 95% CI: 0.328, 1.90), supporting the evaluation of both regimens in the ongoing phase 3 TROPION-Lung07 study

Figure 1. Schematic diagram of the TGI model

E_{Chemo} was separately estimated as effect of carboplatin (E_{Carbo}) and cisplatin (E_{Cis}); λ , resistance to drug effect; AUC_1 , cycle-wise area under the curve of Dato-DXd; K_{grow} , first-order rate constant for tumor growth; K_{kill} , first-order rate constant for combined multiplicative drug effect of Dato-DXd (E_{Dato}), pembrolizumab (E_{Pembro}), and platinum chemotherapy (E_{Chemo}).

Table 1. Parameter estimates of the full model for TGI

Parameter	Unit	Covariate ^a	Estimate ^a	95% CI
E_{Dato}	1/day	–	0.00335	0.00281, 0.00400
	–	Treatment-naïve	2.01	1.40, 2.88
	–	Last line IO	1.66	0.978, 2.82
	–	Squamous histology	0.884	0.620, 1.26
	–	Female	1.08	0.775, 1.50
E_{Pembro}	–	ADA+ without NAb	0.643	0.412, 1.00
	–	ADA+ with NAb	1.23	0.790, 1.92
	–	PD-L1 <1%	1.00 FIXED ^b	–
E_{Carbo}	–	PD-L1: 1–49%	1.70	1.20, 2.40
	–	PD-L1 >50%	1.51	1.01, 2.26
E_{Cis}	–	–	0.947	0.663, 1.35
λ	1/day	–	0.0118	0.00844, 0.0164
K_{grow}^c	1/day	–	0.000631	0.000213, 0.00187
	–	Former smoker	2.53	1.08, 5.91
	–	Current smoker	1.47	0.449, 4.81
	–	Liver metastasis	1.96	1.01, 3.78
	–	Bone metastasis	1.01	0.497, 2.04
K_{grow}^c	–	Brain metastasis	0.642	0.302, 1.37
	–	ECOG PS=1	0.817	0.441, 1.51
K_{grow}^c	–	Asian	0.415	0.236, 0.730

^aCovariate effects are shown as fold-change of the respective parameter estimate.

^bFixed because the estimate was close to null in PD-L1 <1%.

^cBox-Cox shape parameter (95% CI) for K_{grow} was $-0.387 [-0.547, -0.226]$.

The variances (CV) of E_{Dato} , λ , and K_{grow} were 114%, 10%, and 1730%, respectively, with respective shrinkage of 18.7%, 30.5%, and 34.1%. $Corr(E_{Dato}, K_{grow}) = -0.0236$; $Corr(K_{grow}, \lambda) = -0.318$, and $Corr(E_{Dato}, \lambda) = 0.583$. Additive error = 1.48 mm; proportional error (CV) = 7.22%.

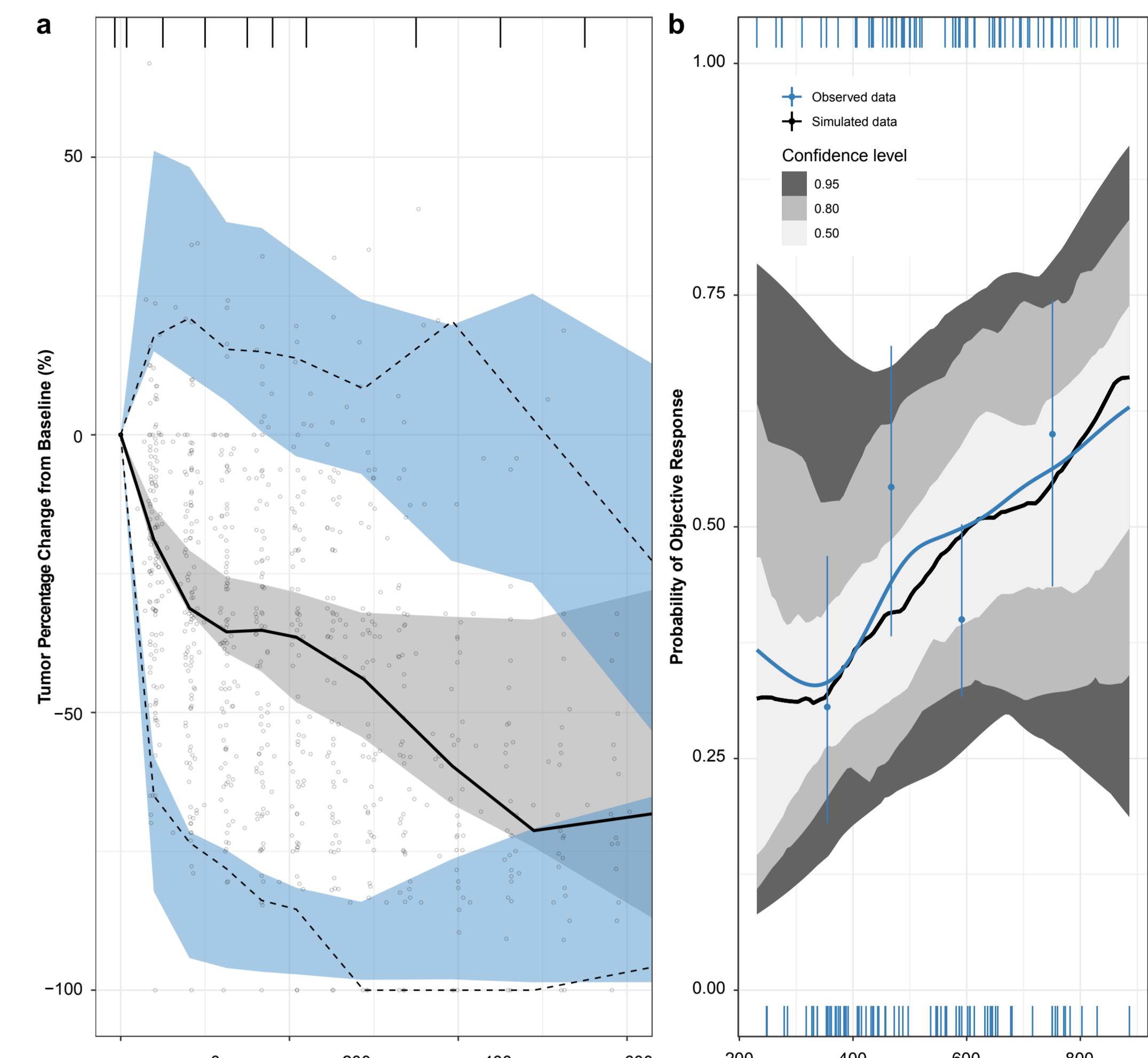
Table 2. Parameter estimates of the full logistic regression model for ORR

Parameter	Predictor ^a	Estimate ^a	95% CI ^b
–	–	0.0910	0.0277, 0.265
Baseline probability of BOR (CR/PR)	Log (AUC ₁ of Dato-DXd)	1.17 ^b	0.707, 1.95
Baseline probability of BOR (CR/PR)	Age	0.564 ^b	0.356, 0.850
Baseline probability of BOR (CR/PR)	ECOG=1	2.64	1.15, 6.16
Baseline probability of BOR (CR/PR)	Treatment-naïve	3.82	1.37, 11.4

^aA predictor effect represents the odds ratio compared to the baseline probability.

^bEffect size corresponds to one SD increase in the predictor.

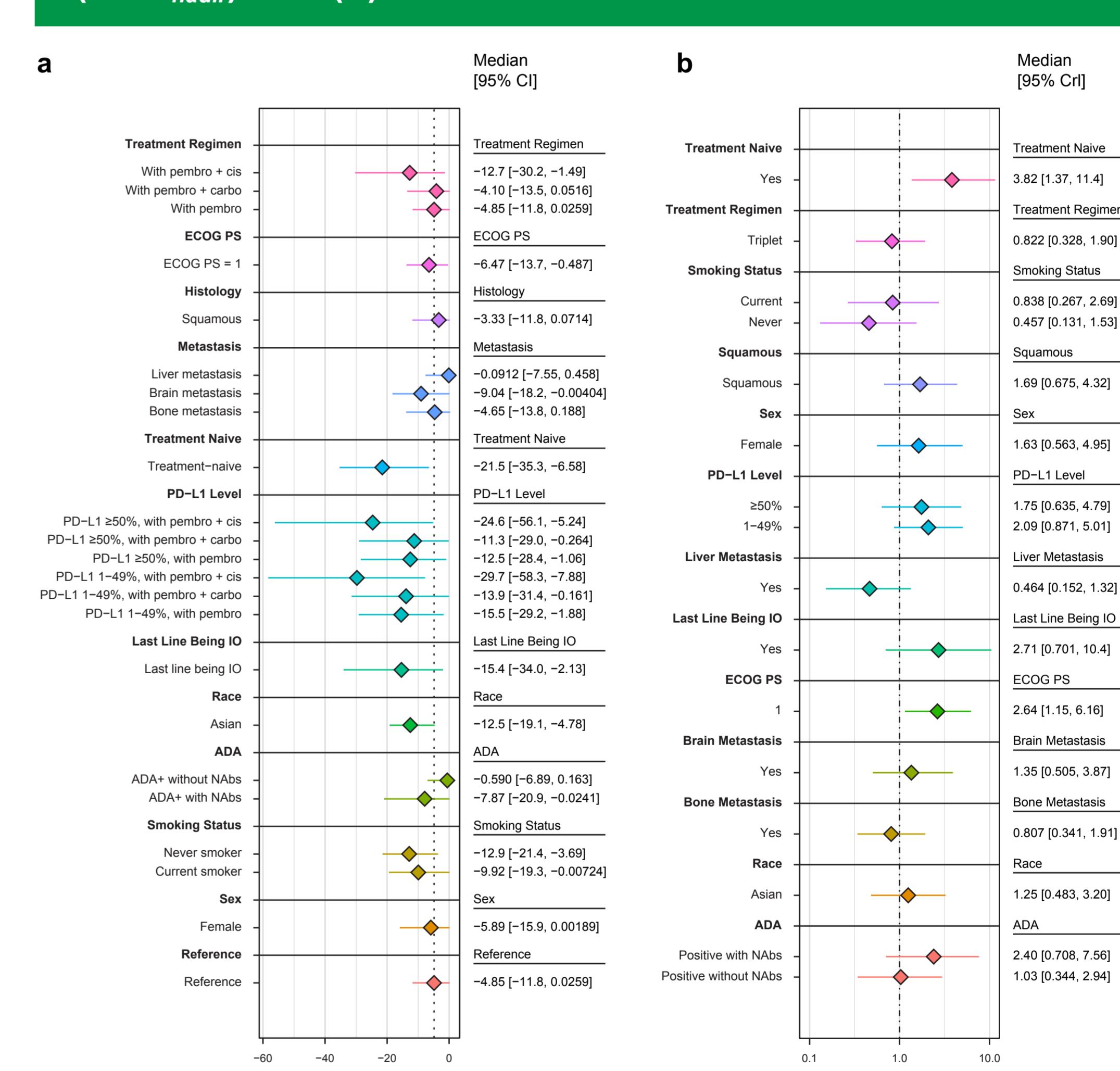
^c95% credible interval of the posterior distribution; predictors are reported only if the 95% CI did not include the null value (except exposure).


REFERENCES

- Ahn MJ et al. *J Clin Oncol*. 2025;43(3):260–272.
- Goto Y et al. *J Clin Oncol*. 2023;41(16 Suppl):9004.
- Levy BP et al. *J Clin Oncol*. 2024;42(17 Suppl):8617.
- Pégné S et al. Population Approach Group in Europe (PAGE) annual meeting proceedings. 2024: Abstract 10859. Available from: www.page-meeting.org/?abstract=10859. Accessed 21 August 2025.

ABBREVIATIONS

ADA, antidiug antibodies; ADC, antibody-drug conjugate; a/m, advanced/metastatic; AUC, area under the curve; AUC₁, cycle-wise area under the curve; BOR, best overall response; CI, confidence interval; C_{max}, maximum concentration; C_{min}, minimum concentration; CR, complete response; CrI, credible interval; CV, coefficient of variation; Dato-DXd, datopotamab deruxtecan; ECOG PS, Eastern Cooperative Oncology Group performance status; EGFRm, epidermal growth factor receptor-mutated; Eq, equation; ER, exposure-response; HER2-, human epidermal growth factor receptor-negative; HR+, hormone receptor-positive; IO, immune-oncology treatment; LPIO, last prior line of therapy with an IO; NAb, neutralizing antibodies; NSCLC, non-small cell lung cancer; ORR, overall response rate; PD-1, programmed cell death protein 1; PD-L1, programmed cell death-ligand 1; PFS, progression-free survival; PK, pharmacokinetic; PR, partial response; PLT, prior line of therapy; Q3W, every 3 weeks; SD, standard deviation; TGI, tumor growth inhibition; TROP2, trophoblast cell surface antigen 2; TS, tumor size.


Figure 2. Graphical evaluation of the full TGI (a) and ORR (b) models

(a) Visual predictive check of the final TGI model. Open circles: observed data; solid and dashed lines: 50%, 2.5%, and 97.5% percentiles of the observed data, respectively. Shaded areas: 95% CI of the simulated percentiles; tick marks along the top of each plot represent the boundaries between time bins.

(b) Posterior predictive check of the full ORR model. Black and blue lines: mean of generalized additive model fits of the simulated (n=200) and observed data, respectively; gray bands: 50%, 80%, and 95% credible intervals of the simulations; blue points and error bars: observed mean response and Wilson's 95% CI, respectively, within each exposure quartile; blue ticks on the top and bottom of the panel represent the responders and non-responders, respectively.

Figure 3: Univariate analysis of covariate effects on the (a) percent change in TS from baseline at nadir (%TS_{nadir}) and (b) the odds ratio of the BOR of CR/PR

Diamonds and solid horizontal lines: median covariate effect and 95% CI in the respective perturbed subject; vertical dashed line: median effect in the reference subject (male, non-Asian, treatment-experienced, no LPIO, ECOG PS = 0, PD-L1 <1%, non-squamous, no baseline metastasis, ADA-negative, former smoker, and (a) receiving monotherapy or (b) doublet regimen).

CONCLUSIONS

- Tumor size response was characterized by a TGI model incorporating the multiplicative combination effects. The model indicated that the combination of Dato-DXd + pembrolizumab ± platinum chemotherapy continued to elicit durable tumor size reduction and improved ORR with the increase of Dato-DXd exposure in patients with a/m NSCLC
- Models predicted greater tumor size reduction and a higher ORR in treatment-naïve patients compared to treatment-experienced patients, supporting the evaluation of Dato-DXd + pembrolizumab ± platinum chemotherapy in the 1L setting in the ongoing pivotal phase 3 TROPION-Lung07 and TROPION-Lung08 studies
- Key baseline patient characteristics associated with antitumor response were identified and warrant further evaluation in ongoing phase 3 studies of Dato-DXd in these combination regimens
- Limitations: TROPION-Lung02 was a nonrandomized study and effect of covariates (including regimen effect and PD-L1 status) could not be estimated with a high degree of confidence due to the limited sample sizes

ACKNOWLEDGMENTS

- The authors would like to thank the patients, their families, and their caregivers for their participation, and the investigators and study staff for their contributions
- This study is sponsored by Daiichi Sankyo, Inc. In July 2020, AstraZeneca entered into a global development and commercialization collaboration agreement with Daiichi Sankyo, Inc. for datopotamab deruxtecan (Dato-DXd; DS-1062)
- Graphics support was provided by BOLDSCIENCE, Inc., and was funded by Daiichi Sankyo, Inc. in accordance with Good Publication Practice (GPP) guidelines ([http://www.ismpp.org/g](http://www.ismpp.org/gpp-2022)