

Trastuzumab deruxtecan (T-DXd) vs trastuzumab emtansine (T-DM1) in patients with high-risk human epidermal growth factor receptor 2—positive (HER2+) primary breast cancer with residual invasive disease after neoadjuvant therapy: Interim analysis of DESTINY-Breast05

Charles E Geyer Jr,^{a,b} Yeon Hee Park, Zhiming Shao, Chiun-Sheng Huang, Carlos Barrios, Jame Abraham, Aleix Prat, Naoki Niikura, Michael Untch, Seock-Ah Im, Wei Li, Huiping Li, Yongsheng Wang, Herui Yao, Sung-Bae Kim, Elton Mathias, Yuta Sato, Wenjing Lu, Hanan Abdel-Monem, Sibylle Loibl On behalf of the DESTINY-Breast05 investigators

^aNSABP Foundation, Pittsburgh, PA, USA ^bUniversity of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, USA

Saturday, October 18, 2025 Presentation LBA1

Declaration of interests

Dr Geyer reports:

- Grants or contracts from Daiichi Sankyo and AstraZeneca, Roche/Genentech, Exact Sciences
- Meeting and/or travel support from Exact Sciences
- Honoraria/Travel Expenses: Exact Sciences, Merck
- Support for this presentation from Daiichi Sankyo and AstraZeneca

Background

- HER2-targeted therapies have greatly improved outcomes for patients with HER2+ eBC^{1,2}
- In the KATHERINE trial, adjuvant T-DM1 significantly improved IDFS and OS relative to trastuzumab in patients with HER2+ eBC and residual invasive disease following NAT (HR for IDFS, 0.50; 95% CI, 0.39-0.64; P < 0.001; HR for OS, 0.66; 95% CI, 0.51-0.87; P = 0.003)^{3,4}
 - However, subsets of patients presenting with advanced locoregional disease or positive nodal status after NAT had 3-year IDFS rates of 76% and 83%, with 7-year IDFS rates of 67% and 72%, respectively^{4,5}
 - Furthermore, adjuvant T-DM1 did not reduce CNS recurrences relative to trastuzumab⁵
- Therefore, an unmet medical need remained even with adjuvant T-DM1 for these high-risk patients in the post-neoadjuvant setting^{3,4}
- Early phase studies in heavily pretreated HER2+ mBC had demonstrated remarkable activity of T-DXd,⁶ and DESTINY-Breast03 demonstrated superiority of T-DXd relative to T-DM1 in the 2L metastatic setting⁷

DESTINY-Breast05 is a global, multicenter, randomized, open-label, phase 3 trial to assess efficacy and safety of adjuvant T-DXd vs T-DM1 in high-risk patients with HER2+ eBC and residual invasive disease following neoadjuvant therapy

2L, second line; eBC, early breast cancer; CNS, central nervous system; HER2, human epidermal growth factor receptor 2; HR, hazard ratio; IDFS, invasive disease—free survival; mBC, metastatic breast cancer; NAT, neoadjuvant therapy; OS, overall survival; T-DM1, trastuzumab emtansine; T-DXd, trastuzumab deruxtecan.

1. Loibl S et al. ESMO Open. 2025;10(suppl 4):105112. 2. Early Breast Cancer Trialists' Collaborative group (EBCTCG). Lancet Oncol. 2021;22(8):1139-1150. 3. von Minckwitz G et al. N Engl J Med. 2019;380(7):617-628. 4. Geyer CE et al. N Engl J Med. 2025;392(2):249-257. 5. Mamounas EP et al. Ann Oncol. 2021;32(8):1002-1014. 6. Modi S et al, N Engl J Med. 2020; 382:610-621, 2020. 7. Hurvitz SA et al. Lancet. 2023;401(10371):105-117.

DESTINY-Breast05 study design

A global, multicenter, randomized, open-label, phase 3 trial (NCT04622319)

Key Eligibility Criteria

- Residual invasive disease in the breast and/or axillary lymph nodes after neoadjuvant chemotherapy with HER2-directed therapy (NAT)^a
- High-risk defined as presentation prior to NAT with:
 - Inoperable eBC (cT4,N0-3,M0 or cT1-3,N2-3,M0)OR
 - Operable eBC (cT1-3,N0-1,M0) with axillary node-positive disease (ypN1-3) after NAT
- Centrally confirmed HER2+ (IHC 3+ or ISH+) eBC
- ECOG PS 0 or 1

Stratification factors

- Extent of disease at presentation (inoperable, operable)
- HER2-targeted NAT (single, dual)
- Hormone receptor status (positive, negative)
- Post-NAT pathologic nodal status (positive, negative)

- Concomitant adjuvant ET was allowed per local practices
- If administered, RT could be initiated <u>concurrent</u> with study therapy or completed prior to initiation of study therapy (<u>sequential</u>) per investigator
- ILD monitoring program for patients treated with RT
 - All patients had baseline non-contrast, low dose (LD) chest CT during screening
 - All RT patients (concurrent and sequential) had LD chest CT 6 weeks after start of study therapy, then every 12 weeks while on therapy, and at 40-day follow-up
 - Sequential RT patients had additional LD chest CT after completion of RT prior to start of study therapy

BMFI, brain metastasis–free interval; CT, computed tomography; eBC, early breast cancer; DCO, data cutoff; DFS, disease-free survival; DRFI, distant recurrence–free interval; ECOG PS, Eastern Cooperative Oncology Group performance status; ET, endocrine therapy; HER2, human epidermal growth factor receptor 2; IDFS, invasive disease–free survival; IHC, immunohistochemistry; ILD, interstitial lung disease; ISH, in situ hybridization; IV, intravenous; NAT, neoadjuvant therapy; OS, overall survival; Q3W, every 3 weeks; R, randomization; RT, radiotherapy; T-DM1, trastuzumab emtansine; T-DXd, trastuzumab deruxtecan.

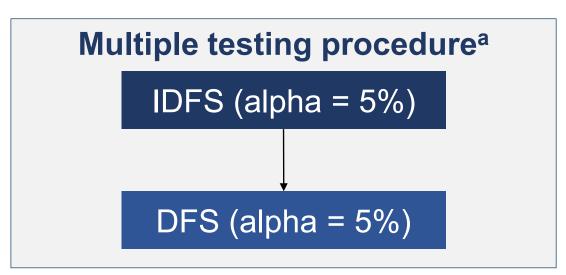
aNAT is defined as ≥16 weeks' NAT with ≥9 weeks trastuzumab ± pertuzumab and ≥9 weeks taxane-based chemotherapy.

Study status and statistical analysis

1600 randomized patients would provide ~80% power with ~207 IDFS events to demonstrate a statistically significant difference in IDFS assuming a HR of 0.675, corresponding to an improvement of 3-year IDFS rate from 83.0% projected in the T-DM1 arm to 88.2% in the T-DXd arm

Study status

- First patient in Dec 2020
- Last patient randomized Feb 2024
- Last patient final treatment Feb 2025
- 481 locations


Statistical analysis

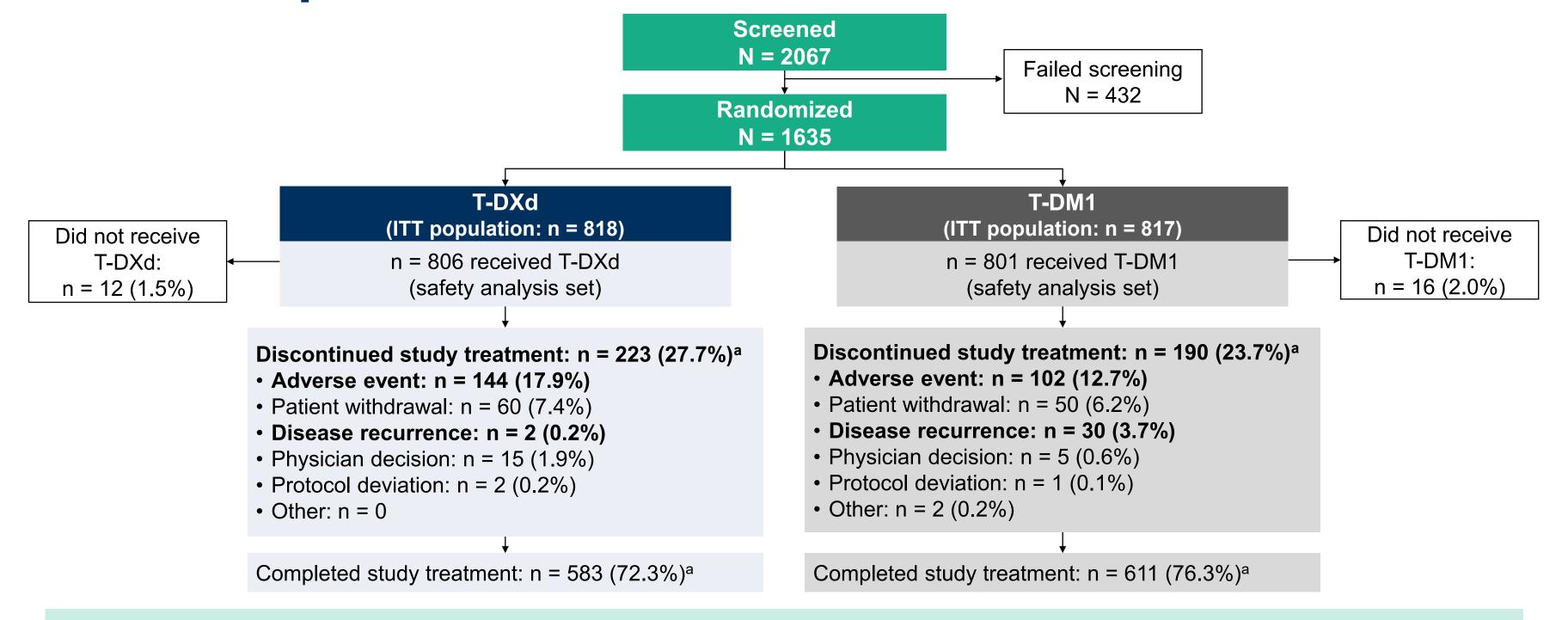
Interim analysis of IDFS planned at ~70% of the 207 target events

Interim analysis timeline

• DCO: 2 July 2025

• Events as of DCO: 153 (74% IF)

^aSeparate Lan-DeMets alpha-spending functions with O'Brien–Fleming boundaries were used to allocate alpha between interim and final analyses for IDFS and DFS under the hierarchical testing strategy


DCO, data cutoff; DFS, disease-free survival; HR, hazard ratio; IDFS, invasive disease-free survival; IF, information fraction.

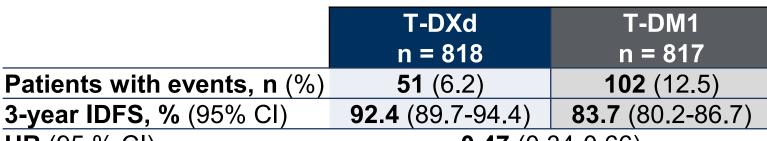
Patient disposition

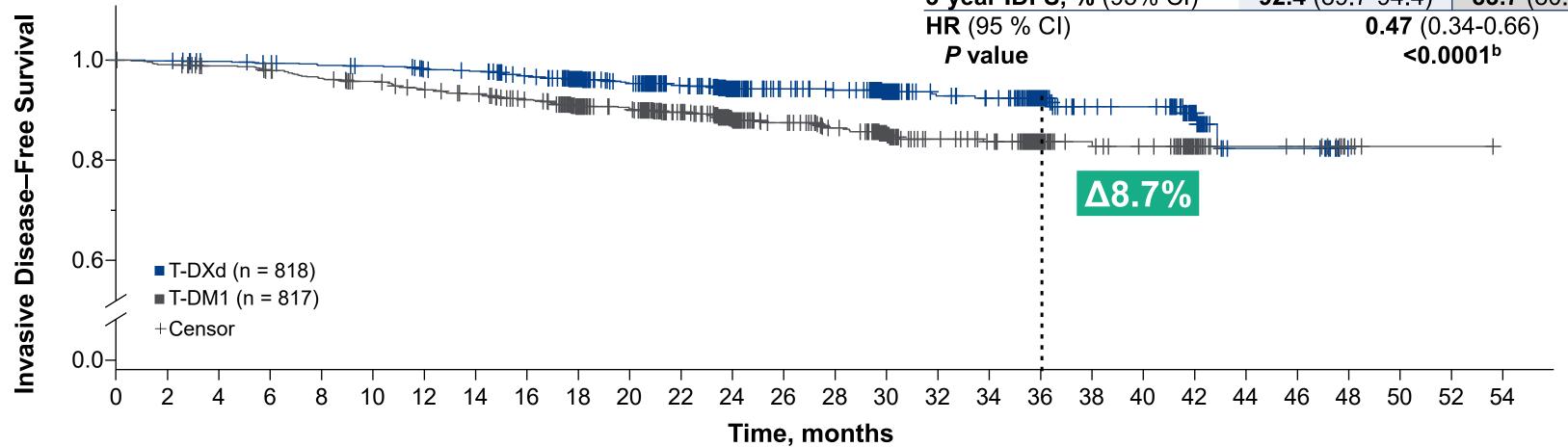
Median study duration: 29.9 months (range, 0.3-53.4 months) with T-DXd and 29.7 months (range, 0.1-54.4 months) with T-DM1

ITT, intention-to-treat; T-DM1, trastuzumab emtansine; T-DXd, trastuzumab deruxtecan. ^aCalculated using the number of patients in the safety analysis set as a denominator.

Baseline demographics and clinical characteristics

	T-DXd	T-DM1
	n = 818	n = 817
Age, median (range), years	50.3 (24-78)	50.6 (21-83)
<65	735 (89.9)	736 (90.1)
_≥65	83 (10.1)	81 (9.9)
Female sex, n (%)	814 (99.5)	814 (99.6)
Race		
White	301 (36.8)	333 (40.8)
Black or African American	22 (2.7)	13 (1.6)
Asian	399 (48.8)	386 (47.2)
Other	96 (11.7)	85 (10.4)
Region, n (%)		
Asia	392 (47.9)	380 (46.5)
Europe	222 (27.1)	223 (27.3)
North America + Australia	57 (7.0)	72 (8.8)
Rest of world ^a	147 (18.0)	142 (17.4)
ECOG PS score, n (%)		
0	656 (80.2)	652 (79.8)
1	162 (19.8)	165 (20.2)
HER2 expression, ^b n (%)		
IHC 3+	676 (82.6)	670 (82.0)
IHC 2+ and ISH+	129 (15.8)	133 (16.3)
IHC 2+ and ISH-	2 (0.2)	0
IHC 1+ and ISH+	11 (1.3)	14 (1.7)
Hormone receptor status, ^c n (%)		
Positive	581 (71.0)	583 (71.4)
Negative	237 (29.0)	234 (28.6)


	T-DXd n = 818	T-DM1 n = 817
Operative status at disease presentation, ^c n (%)		
Operable (cT1-3, N0-1, M0)	387 (47.3)	393 (48.1)
Inoperable (cT4, N0-3, M0 or cT1-3, N2-3, M0)	431 (52.7)	424 (51.9)
Post-NAT pathologic nodal status, ^c n (%)		
Positive	660 (80.7)	658 (80.5)
Negative	158 (19.3)	159 (19.5)
Neoadjuvant HER2-targeted therapy, n (%)		
Trastuzumab alone	176 (21.5)	171 (20.9)
Trastuzumab + pertuzumab	637 (77.9)	641 (78.5)
Trastuzumab + other HER2-targeted therapy	3 (0.4)	3 (0.4)
Trastuzumab + pertuzumab + other HER2-targeted therapy	2 (0.2)	2 (0.2)
Neoadjuvant chemotherapy, n (%)		
Taxanes	818 (100)	817 (100)
Platinum compounds	386 (47.2)	392 (48.0)
Anthracycline	423 (51.7)	399 (48.8)
Radiotherapy treatment, n (%)		
Adjuvant radiotherapy	764 (93.4)	759 (92.9)
Concurrent	438 (53.5)	480 (58.8)
Sequential	326 (39.9)	279 (34.1)
No radiotherapy	54 (6.6)	58 (7.1)


ECOG PS, Eastern Cooperative Oncology Group performance status; HER2, human epidermal growth factor receptor 2; IHC, immunohistochemistry; ISH, in situ hybridization; NAT, neoadjuvant therapy; T-DM1, trastuzumab emtansine; T-DXd, trastuzumab deruxtecan. alncluded regions: Argentina, Brazil, Chile, Czech Republic, Israel, Mexico, Peru, Poland, Romania, Russian Federation. Centrally confirmed. As reported in electronic data capture.

Number at Risk:

T-DXd	818	788	781	776	771	768	758	753	731	684	634	544	440	380	370	275	218	212	129	92	90	46	14	14	0	0	0	0
T-DM1	817	781	769	760	745	734	719	708	687	632	599	527	417	355	337	233	186	177	120	84	79	38	14	13	4	1	1	0

53% reduction in the risk of invasive disease recurrence or death for T-DXd compared with T-DM1

HR, hazard ratio; IDFS, invasive disease–free survival; T-DM1, trastuzumab emtansine; T-DXd, trastuzumab deruxtecan. **Efficacy stopping boundary**, *P* = 0.0183.

aIDFS is defined as the time from randomization until the date of first occurrence of one of the following events: recurrence of ipsilateral invasive breast tumor, recurrence of ipsilateral locoregional invasive breast cancer, contralateral invasive breast tumor, recurrence of ipsilateral locoregional invasive breast cancer, a distant disease recurrence, or death from any cause. Two-sided P value from stratified log-rank test. Hazard ratio and 95% CI from stratified Cox proportional hazards model with stratification factor of operative status at disease presentation.

Primary endpoint subgroup analysis: IDFS

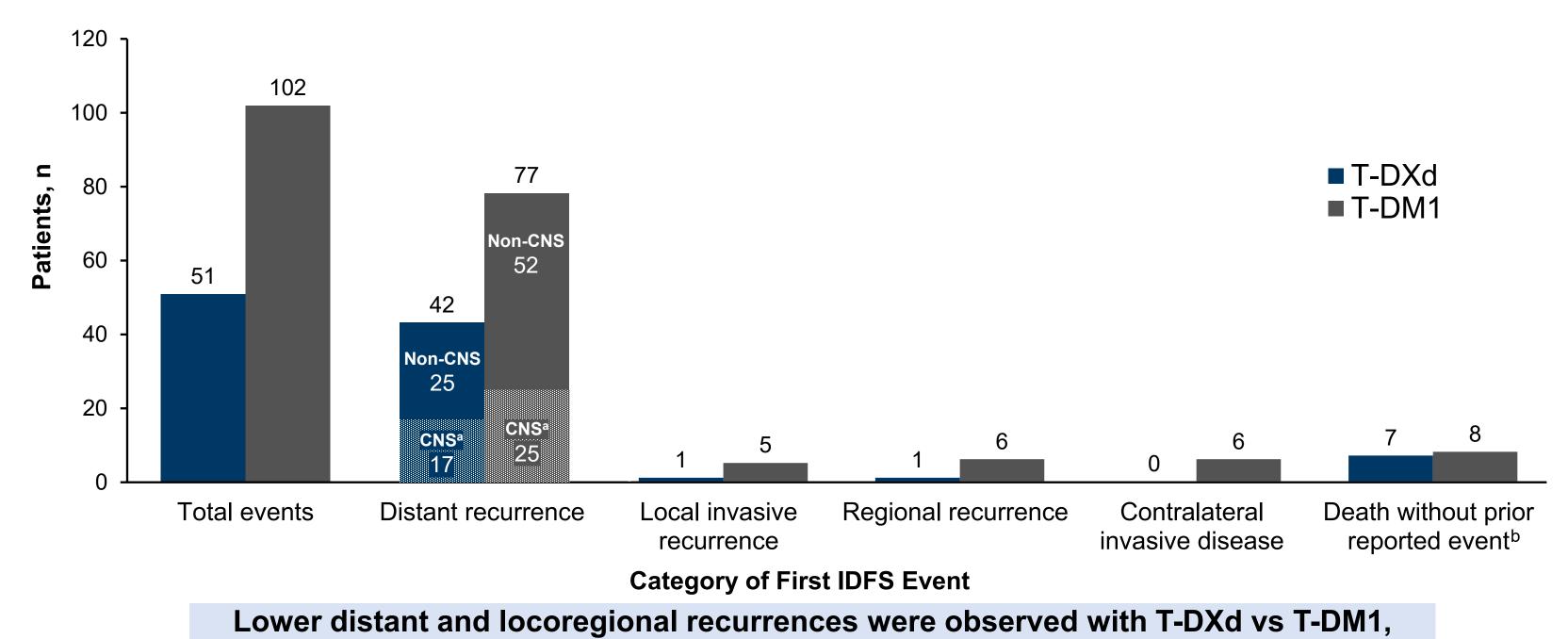
No. events/patients

3-year IDFS, % (95% CI)

	T-DXd	T-DM1	T-DXd n = 818	T-DM1 n = 817		HR (95% CI) ^b
All patients	51/818	102/817	92.4 (89.7-94.4)	83.7 (80.2-86.7)	—	0.47 (0.34-0.66)
Age						
<65 years	46/735	87/736	92.1 (89.2-94.3)	84.1 (80.2-87.2)		0.50 (0.35-0.71)
≥65 years	5/83	15/81	94.9 (87.0-98.1)	79.2 (67.9-87.0)		0.31 (0.11-0.86)
Race						
Asian	19/399	34/386	95.1 (91.9-97.0)	89.5 (85.3-92.6)	-	0.53 (0.30-0.93)
Non-Asian	32/419	68/431	89.5 (84.5-93.0)	77.9 (72.1-82.7)		0.44 (0.29-0.67)
Region						
Asia	19/392	33/380	95.0 (91.9-97.0)	89.7 (85.4-92.7)	—	0.55 (0.31-0.96)
Europe	13/222	30/223	93.1 (86.9-96.4)	82.9 (75.8-88.1)		0.40 (0.21-0.77)
North America + Australia	5/57	10/72	85.8 (63.9-94.9)	80.7 (65.3-89.7)	-	0.56 (0.19-1.63)
Rest of world	14/147	29/142	85.1 (73.6-91.8)	69.2 (56.3-79.0)		0.43 (0.23-0.81)
lormone receptor status						
Postive	33/581	59/583	93.5 (90.6-95.6)	86.8 (82.9-89.9)		0.54 (0.35-0.82)
Negative	18/237	43/234	89.4 (82.0-93.9)	75.6 (67.6-81.9)	—	0.37 (0.22-0.65)
Disease status at presentation before NAT						
Operable (cT1-3, N0-1, M0)	21/387	34/393	92.8 (88.0-95.7)	88.4 (83.8-91.8)		0.58 (0.34-1.01)
Inoperable (cT4, N0-3, M0 or cT1-3, N2-3, M0)	30/431	68/424	92.0 (88.5-94.5)	79.4 (73.9-83.8)	—	0.41 (0.27-0.63)
Post-NAT pathologic nodal status			· ·	·		·
Positive ^a	40/660	87/658	92.5 (89.3-94.8)	82.5 (78.4-85.9)		0.43 (0.29-0.62)
Negative ^a	11/158	15/159	91.6 (85.3-95.3)	88.3 (80.6-93.0)	•	O.73 (0.33-1.59)
HER2-targeted NAT						i
Single	13/176	27/171	87.5 (77.6-93.3)	77.9 (67.7-85.2)	—	0.43 (0.22-0.84)
Dual	38/642	75/646	93.6 (90.9-95.5)	85.2 (81.4-88.2)	—	0.48 (0.33-0.71)
Radiotherapy treatment						·
Sequential radiotherapy	15/326	34/279	93.8 (88.4-96.7)	83.2 (76.4-88.2)		0.35 (0.19-0.64)
Concurrent radiotherapy	30/438	57/480	92.8 (89.7-95.0)	85.1 (80.6-88.6)		0.55 (0.35-0.85)
No radiotherapy	6/54	11/58	81.0 (61.0-91.4)	73.4 (56.4-84.6)		— 0.57 (0.21-1.55)

HER2, human epidermal growth factor receptor 2; HR, hazard ratio; IDFS, invasive disease–free survival; NAT, neoadjuvant therapy; T-DM1, trastuzumab emtansine; T-DXd, trastuzumab deruxtecan.

Dr Charles E Geyer Jr


DESTINY-Breast05

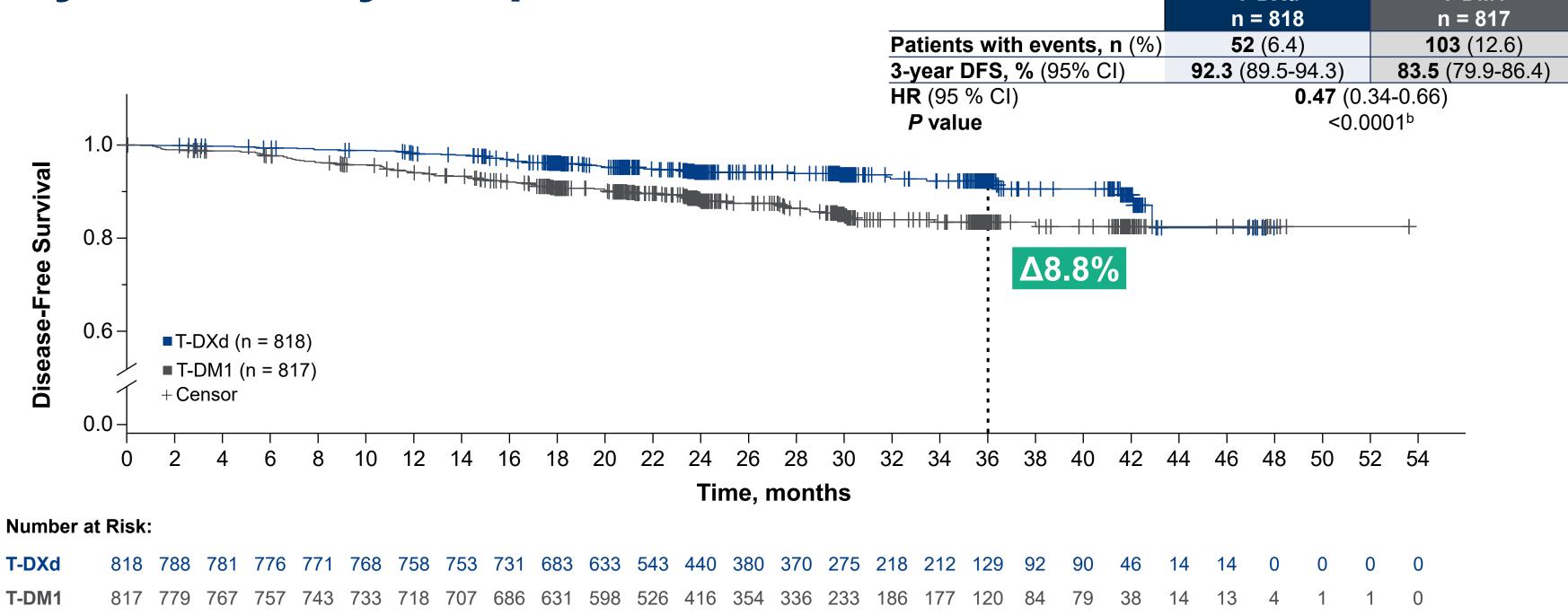
Favors T-DXd ← Favors T-DM1

^aPositive pathologic nodal status defined as ypN1-3 and negative pathologic nodal status defined as ypN0. ^bFrom unstratified Cox proportional hazards model.

Categories of first IDFS events

including CNS recurrences

IDFS, invasive disease–free survival; T-DM1, trastuzumab emtansine; T-DXd, trastuzumab deruxtecan.


Participants who experienced multiple types of IDFS events within 61 days of their first event are reported in the category according to the following hierarchy: distant recurrence CNS, distant recurrence non-CNS, local invasive recurrence, regional recurrence, contralateral breast cancer, and death without a previous event.

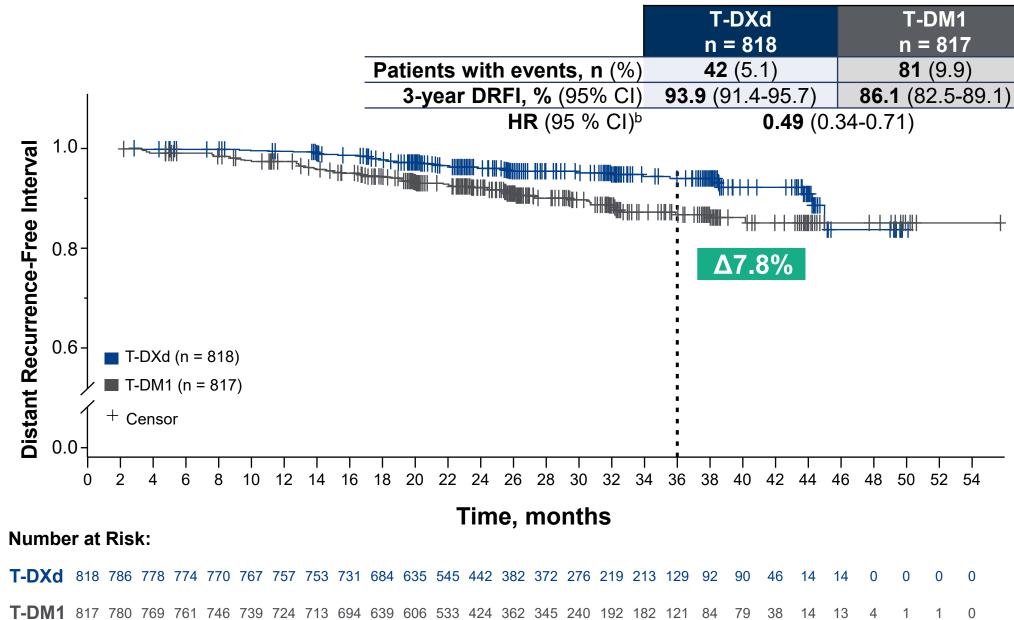
^aCNS as sole site for distant recurrence or one of multiple distance recurrent sites ^bCauses of death in the T-DXd arm were 2 drug-related ILD, unrelated respiratory tract infection, acute respiratory failure (outside AE reporting period), and 2 disease progression, and in the T-DM1 arm were drug-related sepsis, unrelated aneurysm, unrelated pneumothorax, unrelated leiomyosarcoma, self-inflicted gun wound, and 2 disease progression.

Key secondary endpoint: DFSa

DFS, disease-free survival; HR, hazard ratio; INV, investigator assessment; STEEP, Standardized Definitions for Efficacy End Points in adjuvant breast cancer trials; T-DM1, trastuzumab emtansine; T-DXd, trastuzumab deruxtecan. Efficacy stopping boundary, P = 0.0144.

^aDFS defined as the time between randomization and the date of the first occurrence of an IDFS event per STEEP criteria, including second primary non-breast cancer event or contralateral or ipsilateral ductal carcinoma in situ. ^bTwo-sided *P* value from stratified log-rank test. Hazard ratio and 95% CI from stratified Cox proportional hazards model with stratification factor of operative status at disease presentation.

Dr Charles E Geyer Jr



T-DXd

T-DM1

Secondary endpoints: DRFIa, BMFI, and OS

	T-DXd n = 818	T-DM1 n = 817			
BMFI					
Patients with recurrence in CNS, n (%)	17 (2.1)	26 (3.2)			
3-year BMFI rate, % (95% CI)	97.6 (96.2-98.5)	95.8 (93.6-97.2)			
HR (95% CI) ^b	0.64 (0.35-1.17)				
OS (2.9% maturity)					
Patient deaths, n (%)	18 (2.2)	29 (3.5)			
Survival at 3 years % (95% CI)	97.4 (95.8-98.4)	95.7 (93.5-97.2)			
HR (95% CI) ^b	0.61 (0.3	34-1.10)			

BMFI, brain metastasis-free interval; DRFI, distant recurrence-free interval; HR, hazard ratio; OS, overall survival; T-DM1, trastuzumab emtansine; T-DXd, trastuzumab deruxtecan. ^aDRFI is defined as the time between randomization and the date of distant breast cancer recurrence. ^bHR and 95% CI from stratified Cox proportional hazards model with stratification factor of operative status at disease presentation.

Study treatment exposure

	T-DXd	T-DM1
	n = 806 ^a	n = 801 ^a
Median study treatment duration, months	9.8	9.7
Number of cycles, n (%)		
≥4 cycles	737 (91.4)	747 (93.3)
≥7 cycles	670 (83.1)	704 (87.9)
≥11 cycles	612 (75.9)	649 (81.0)
14 cycles	583 (72.3)	611 (76.3)

- More than 72% of patients completed the planned 14 cycles of therapy in both arms
- Patients discontinuing study prior to 14 cycles were allowed to receive additional HER2-targeted therapy as per SOC to complete up to 14 cycles of HER2-targeted adjuvant therapy

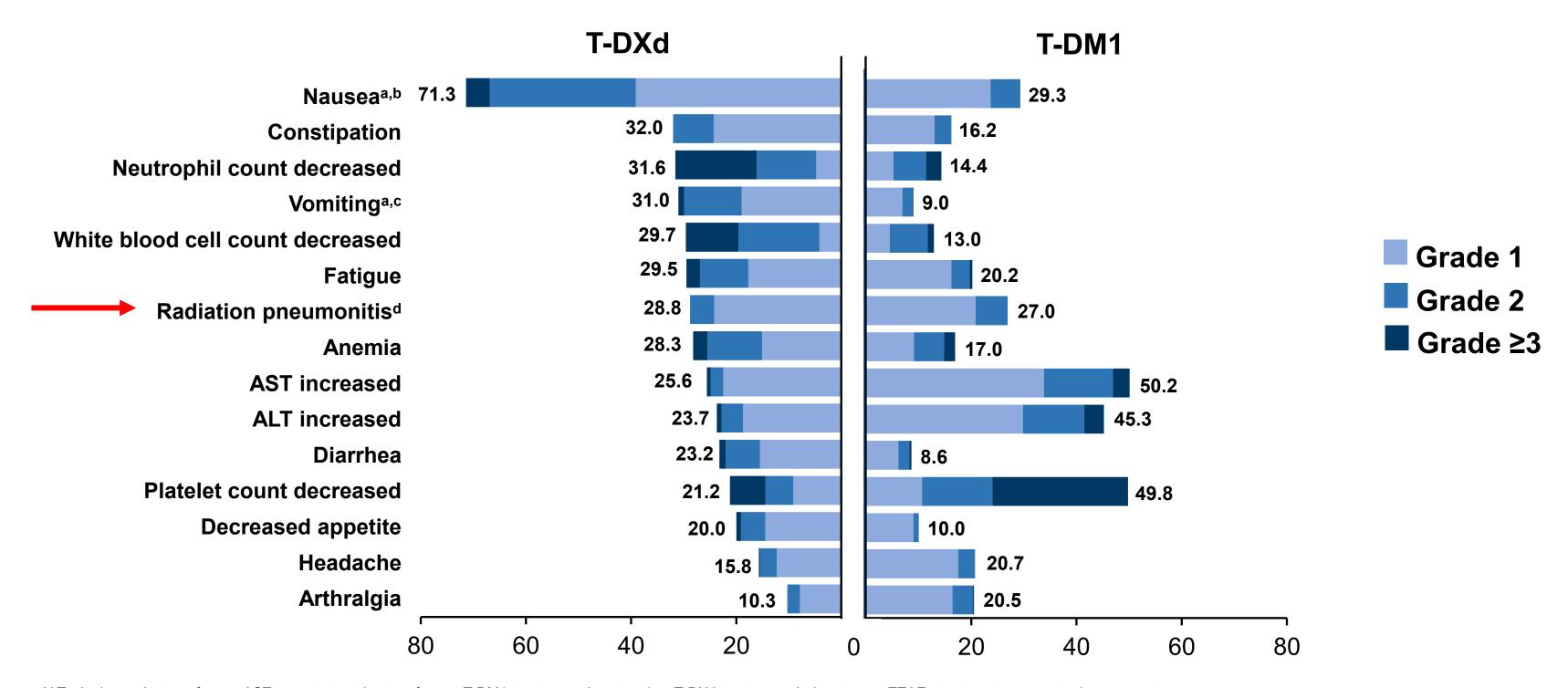
HER2, human epidermal growth factor receptor 2; SOC, standard of care; T-DM1, trastuzumab emtansine; T-DXd, trastuzumab deruxtecan. ^aAll patients who received at least 1 dose of study treatment.

Overall safety summary

	T-DXd	T-DM1
TEAEs, n (%)	n = 806 ^a	n = 801 ^a
Any grade	802 (99.5)	788 (98.4)
Grade ≥3	408 (50.6)	416 (51.9)
Serious	140 (17.4)	109 (13.6)
Associated with drug discontinuation	144 (17.9)	103 (12.9)
Drug-related ILD/pneumonitis ^b	87 (10.8)	20 (2.5)
Associated with drug interruptions	400 (49.6)	329 (41.1)
Associated with dose reductions	213 (26.4)	213 (26.6)
Associated with deaths	3 (0.4)	5 (0.6)

- In the T-DXd arm, causes of death (n = 3) were 2 ILD/pneumonitis^c and respiratory tract infection (adjudicated as not ILD)
- In the T-DM1 arm, causes of death (n = 5) were leiomyosarcoma of the uterus, aneurysm, non-neutropenic sepsis, ovarian cancer, and traumatic pneumothorax

ILD, interstitial lung disease; T-DM1, trastuzumab emtansine; T-DXd, trastuzumab deruxtecan; TEAE, treatment-related adverse event.


aAll patients who received at least 1 dose of study treatment. bInvestigator-assessed as drug-related ILD and pneumonitis per preferred term. cInvestigator assessed and adjudication committee confirmed.

TEAEs in ≥20% of patients (either arm)

ALT, alanine aminotransferase; AST, aspartate aminotransferase; T-DM1, trastuzumab emtansine; T-DXd, trastuzumab deruxtecan; TEAE, treatment-emergent adverse event.

aProphylactic antiemetics were recommended but not mandatory. bln the T-DXd and T-DM1 arms: 39.1% and 23.7% grade 1, 27.8% and 5.5% grade 2, and 4.5% and 0.1% grade 3 events, respectively. cln the T-DXd and T-DM1 arms: 19.0% and 6.9% grade 1, 10.9% and 2.0% grade 2, and 1.1% and 0.1% grade 3 events. dln the T-DXd and T-DM1 arms: 24.2% and 20.8% grade 1, 4.6% and 6.1% grade 2 events.

Adverse events of special interest: ILD/pneumonitis and LV dysfunction

	Adjudicated Drug-related ILD								
n (%)	Any grade	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5			
T-DXd $(n = 806)^a$	77 (9.6)	16 (2.0)	52 (6.5)	7 (0.9)	0	2 (0.2)			
$T-DM1 (n = 801)^a$	13 (1.6)	8 (1.0)	5 (0.6)	0	0	0			

Adjuvant radiotherapy timing (sequential or concurrent) showed no differences in adjudicated drug-related ILD

Similar distributions of any grade adjudicated drug-related ILD events were observed with sequential and concurrent radiotherapy in both treatment arms (T-DXd: 10.7% and 9.6.% vs T-DM1: 2.6% and 1.0%, respectively)

	LV dysfunction								
n (%)	Any grade	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5			
$T-DXd (n = 806)^a$	23 (2.9)	1 (0.1)	20 (2.5)	2 (0.2)	0	0			
T-DM1 (n = 801) ^a	14 (1.7)	0	11 (1.4)	3 (0.4)	0	0			

CT, computed tomography; ILD, interstitial lung disease; LV, left ventricular; T-DM1, trastuzumab emtansine; T-DXd, trastuzumab deruxtecan. ^aAll patients who received at least 1 dose of study treatment.

Conclusions

- DESTINY-Breast05 demonstrated a statistically significant and clinically meaningful improvement in IDFS and DFS with T-DXd vs T-DM1 in high-risk^a patients with HER2+ eBC and residual invasive disease after NAT
- IDFS benefit was consistent across all prespecified subgroups
- Benefit in DRFI with T-DXd was also observed
- CNS metastases and deaths were numerically fewer with T-DXd vs T-DM1
- The overall safety profile of T-DXd was manageable with no new signals
 - >72% of patients completed treatment and was comparable in both arms
 - Adjudicated drug-related ILD was reported in 9.6% of patients receiving T-DXd, with the majority being grade 1 or 2 and reversible, suggesting that the risk is manageable with appropriate monitoring and timely intervention

IDFS Benefit T-DXd versus T-DM1

53% reduction in the risk of invasive disease recurrence or death

3-year IDFS rate 92.4% versus 83.7% HR 0.47 *P* value <0.0001

Adjuvant T-DXd demonstrated superior efficacy with manageable safety in patients with high-risk HER2+ eBC and residual invasive disease after NAT, representing a potential new standard of care in this post-neoadjuvant setting

DFS, disease-free survival; eBC, early breast cancer; HER2, human epidermal growth factor receptor 2; HR, hazard ratio; IDFS, invasive disease–free survival; ILD, interstitial lung disease; NAT, neoadjuvant therapy; T-DM1, trastuzumab emtansine; T-DXd, trastuzumab deruxtecan.

^aDefined as cT4, N0-3, M0 or cT1-3, N2-3, M0 at presentation (before NAT) or cT1-3, N0-1, M0, with axillary node–positive disease (ypN1-3) following NAT.

Acknowledgments

Map of DESTINY-Breast05 trial sites:

We thank:

The patients, their families, and caregivers for their participation

the study site staff for their contributions

Copies of this presentation obtained through QR code are for personal use only and may not be reproduced without written permission of the authors.

Collaborator: AstraZeneca

Under the guidance of authors, medical writing and editorial support was provided by Caylin Bosch, PhD, Jennifer Lau, PhD, and Selene Jarrett, PhD, of ApotheCom, and was funded by Daiichi Sankyo in accordance with Good Publication Practice (GPP) guidelines (http://www.ismpp.org/gpp-2022).

