

A Multicenter, Real-World Study of Treatment Patterns and Clinical Outcomes of Later-Line Therapy in Chinese Patients with Advanced Non-Small Cell Lung Cancer Harboring Non-Actionable Genomic Alterations (RECAP Study)

Hanxiao Chen¹, Xiangjiao Meng², Ling Cai³, Wei Lei⁴, Yu Tang⁵, Xi Shi⁶, Leilei Ma⁷, Jun Zhao¹

¹Peking University Cancer Hospital, Beijing, China; ²Shandong First Medical University & Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, China; ³Sun Yat-sen University Cancer Center, Guangzhou, China; ⁴The First Affiliated Hospital of Soochow University, Suzhou, China;

⁵Liaoning Cancer Hospital, Shenyang, China; ⁶The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; ⁷Daiichi Sankyo (China) Holdings Co., Ltd, Shanghai, China

Introduction

- Lung cancer remains the leading cause of cancer-related mortality worldwide. Non-small cell lung cancer (NSCLC) accounts for approximately 85% of all lung cancer diagnoses¹. Approximately 40–60% of patients with advanced NSCLC lack known actionable genomic alterations (non-AGA), making them ineligible for targeted agents².
- The emergence and widespread adoption of immunotherapy have significantly expanded treatment options for non-AGA NSCLC and are now established as first-line (1L) therapy. For patients with non-AGA receiving second- or third-line therapy after disease progression, guideline-recommended options remain limited and often nonspecific³.
- Clinical decision-making in later lines is further complicated by considerable heterogeneity in patient characteristics and treatment practices. However, real-world evidence remains limited regarding how post-first-line treatment patterns and these heterogeneity factors affect clinical outcomes in non-AGA advanced NSCLC.

Objective

- To address these gaps, we conducted the RECAP study to evaluate clinical outcomes associated with second- and third-line treatment strategies in patients with non-AGA advanced NSCLC. The study also offers a descriptive analysis of treatment patterns and outcomes across key sources of clinical heterogeneity, including histological subtype.

Methods

Study design :

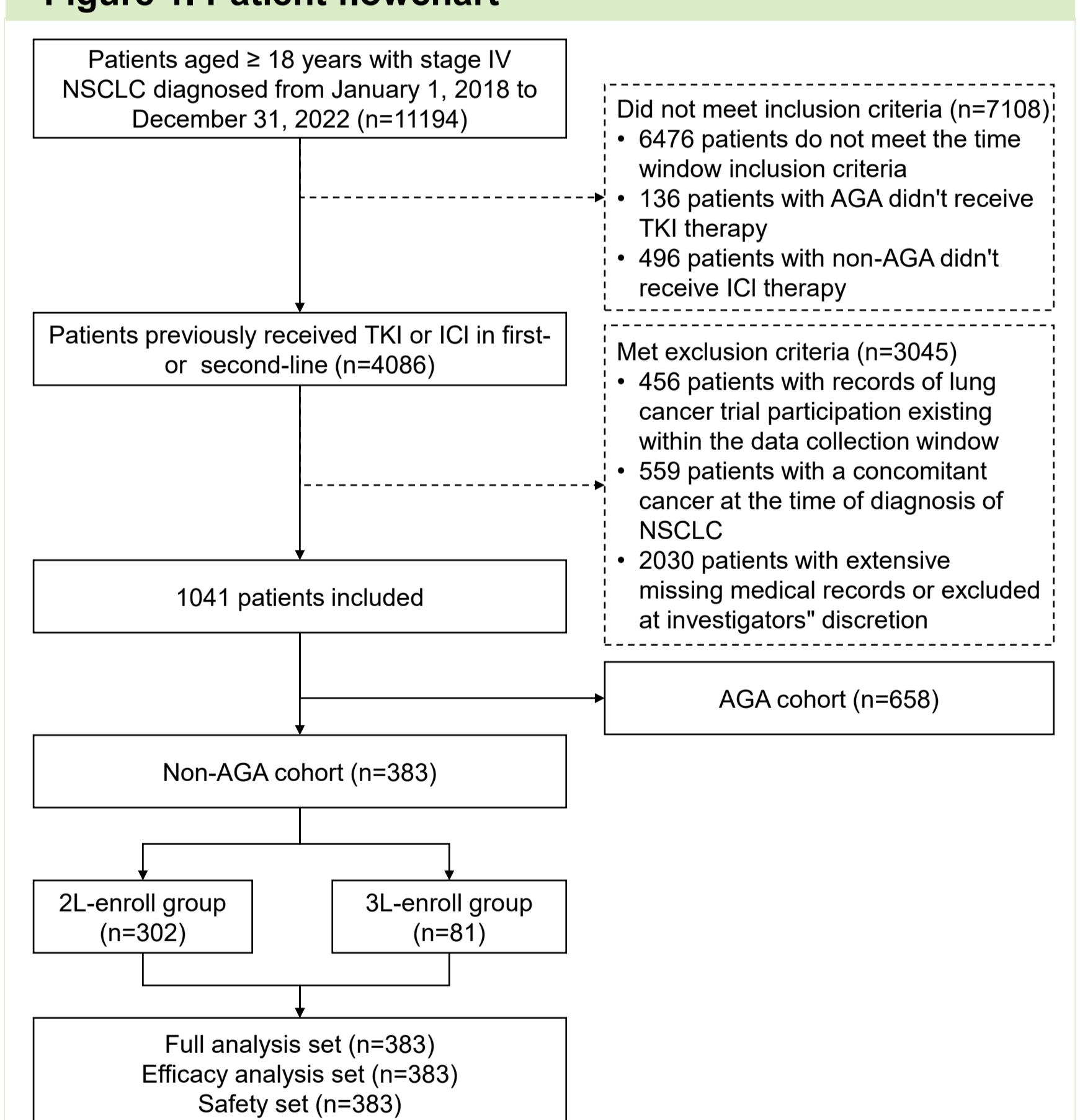
- The RECAP study is a multicenter, retrospective, real-world study (NCT06617390) conducted at six centers across China. Patients diagnosed with advanced NSCLC on or after January 1, 2018, and who initiated second- (2L) or third-line (3L) systemic therapy between September 1, 2019, and December 31, 2022, were eligible for inclusion.
- In the non-AGA cohort, patients were categorized based on the line of therapy they were receiving at the time of study enrollment into the second-line (2L-enrolled) or third-line (3L-enrolled) groups.

Patient Selection:

- Age of 18 years or older at enrollment; Stage IV NSCLC confirmed by histological or cytological examination; Had received prior immunotherapy in the first- or second-line setting.

Variables:

- Regimens were categorized into six groups—immunotherapy (I), immunotherapy-based combinations (I+), chemotherapy monotherapy (C+), chemotherapy-based combinations without immunotherapy agents (C+), anti-angiogenic monotherapy (A), and other regimens (O).


Outcomes:

- The primary outcome was the real-world distribution of different treatment options in NSCLC patients with non-AGA in 2L+ setting. Secondary outcomes included biomarker testing patterns (including timing, proportion, methods, and specimen types associated with biomarker detection) and clinical outcomes (including real-world effectiveness and safety profiles). Real-world effectiveness included real-world progression-free survival (rwPFS), time to treatment discontinuation (rwTTD), time to next treatment or death (rwTTNT), and real-world overall survival (rwOS).

Results

- The full analysis set of the non-AGA cohort included 383 patients with NSCLC, all of whom were also included in the efficacy analysis set and safety set (Figure 1).
- The mean age was 61.11 ± 9.94 years. Female patients accounted for 62 (16.2%) cases. Comorbidities were present in 256 (66.8%) patients.
- Surgical resection of the primary tumor had been performed in 40 (10.4%) patients, and 141 (36.8%) had received radiotherapy (Table 1).

Figure 1. Patient flowchart

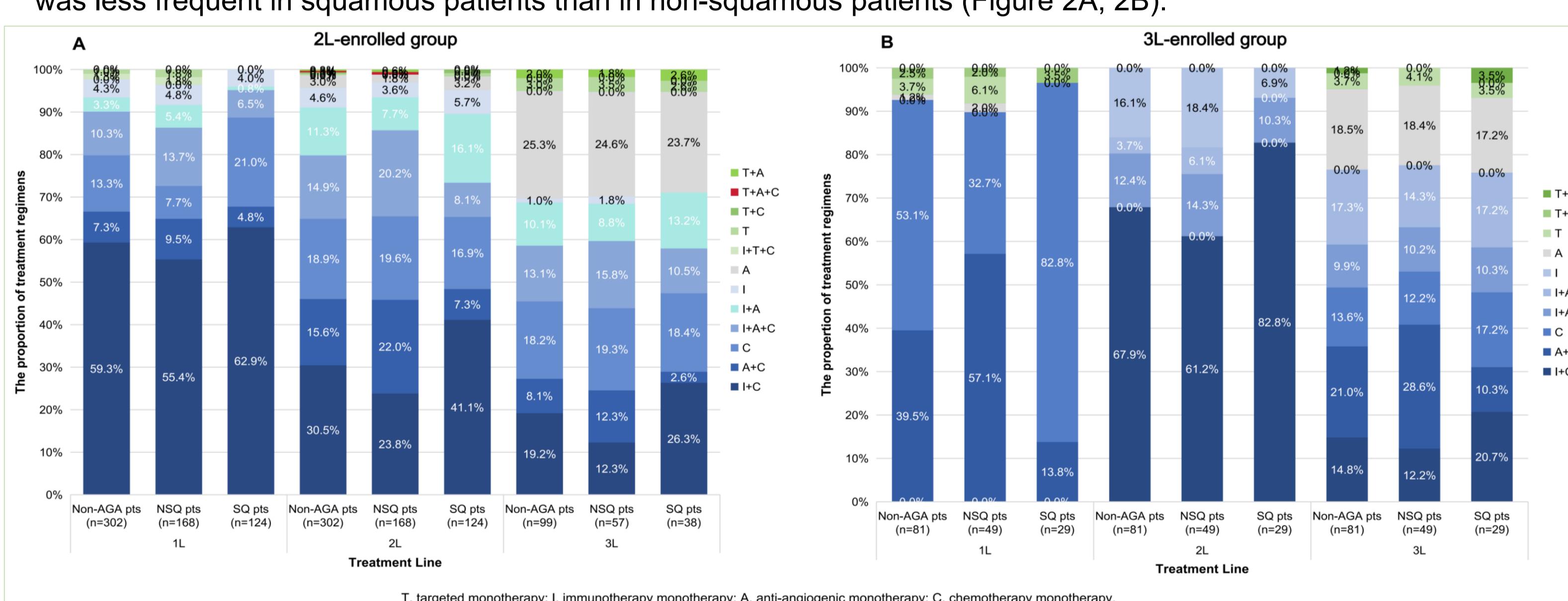


Table 1. Baseline characteristics of patients

Characteristic	All (N=383)
Age, years, mean \pm SD	61.1 \pm 9.9
Age at first diagnosis of advanced NSCLC, years, mean \pm SD	60.7 \pm 9.7
Sex, n (%)	
Male	321 (83.8)
Female	62 (16.2)
Family history of lung cancer, n (%)	28 (7.3)
Smoking history, n (%)	
Yes	229 (59.8)
No	143 (37.3)
Unknown	11 (2.9)
Treatment line at enrolment, n (%)	
Second-line	302 (78.9)
Third-line	81 (21.1)
Use of docetaxel in second-line at enrolment, n (%)	46 (15.2)
Pathological subtype, n (%)	
Squamous cell carcinoma	153 (39.9)
Non-squamous cell carcinoma	217 (56.7)
Adenosquamous carcinoma	4 (1.0)
Other	2 (0.5)
Unknown	7 (1.8)
ECOG performance status, n (%)	
0	33 (8.6)
1	113 (29.5)
2	15 (3.9)
3	4 (1.0)
4	0 (0.0)
Unknown	218 (56.9)
Presence of intracranial metastasis, n (%)	124 (32.4)
Presence of other distant metastases, n (%)	377 (98.4)
Comorbidities, n (%)	256 (66.8)
Previous tumor surgery, n (%)	40 (10.4)
Previous tumor radiotherapy, n (%)	141 (36.8)

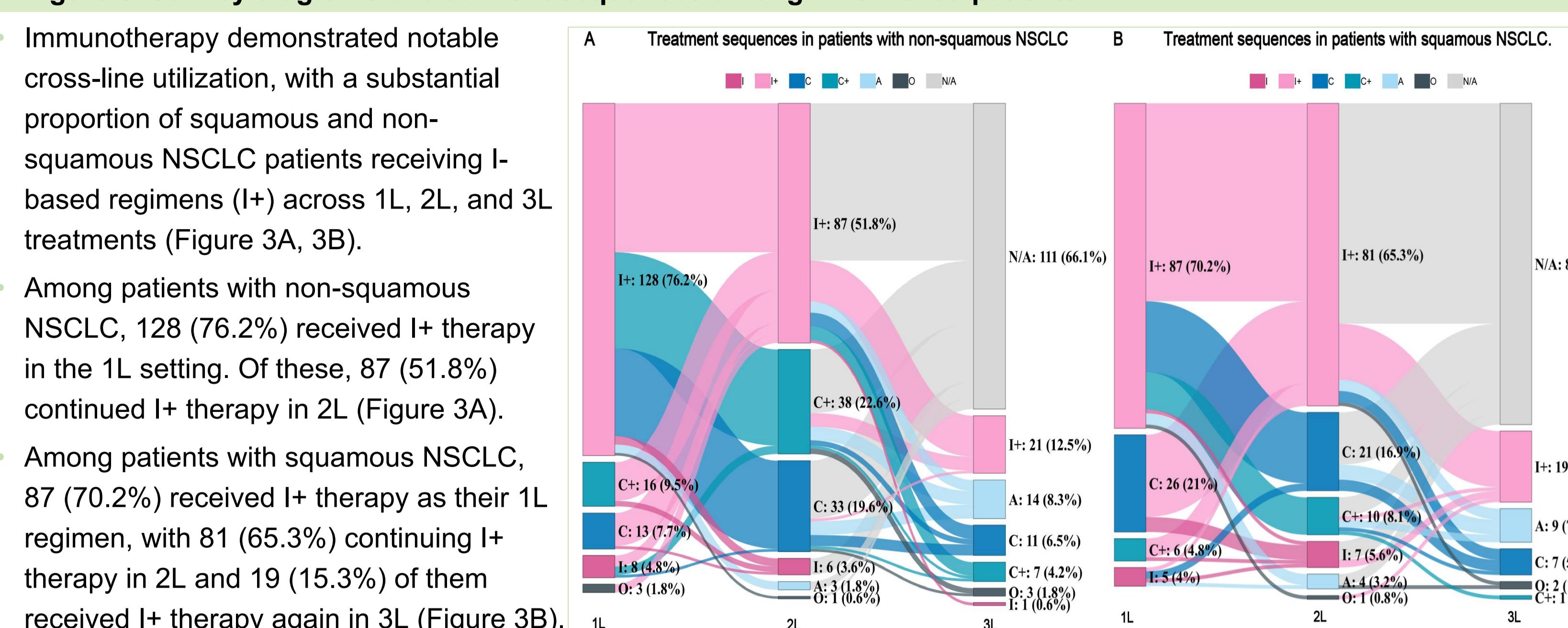
Figure 2. Treatment patterns.

- Among patients enrolled in second-line therapy, the most common first-line regimen was immunotherapy plus chemotherapy (I+C) (179 patients, 59.3%) (Figure 2A). Among patients enrolled in third-line therapy, first-line treatment most commonly was C (43 patients, 53.1%) (Figure 2B).
- In patients who were enrolled in 2L and 3L treatment, the proportion of non-squamous patients receiving I+C was consistently lower than that of squamous patients from 1L to 3L setting. Conversely, the use of regimens containing A was less frequent in squamous patients than in non-squamous patients (Figure 2A, 2B).

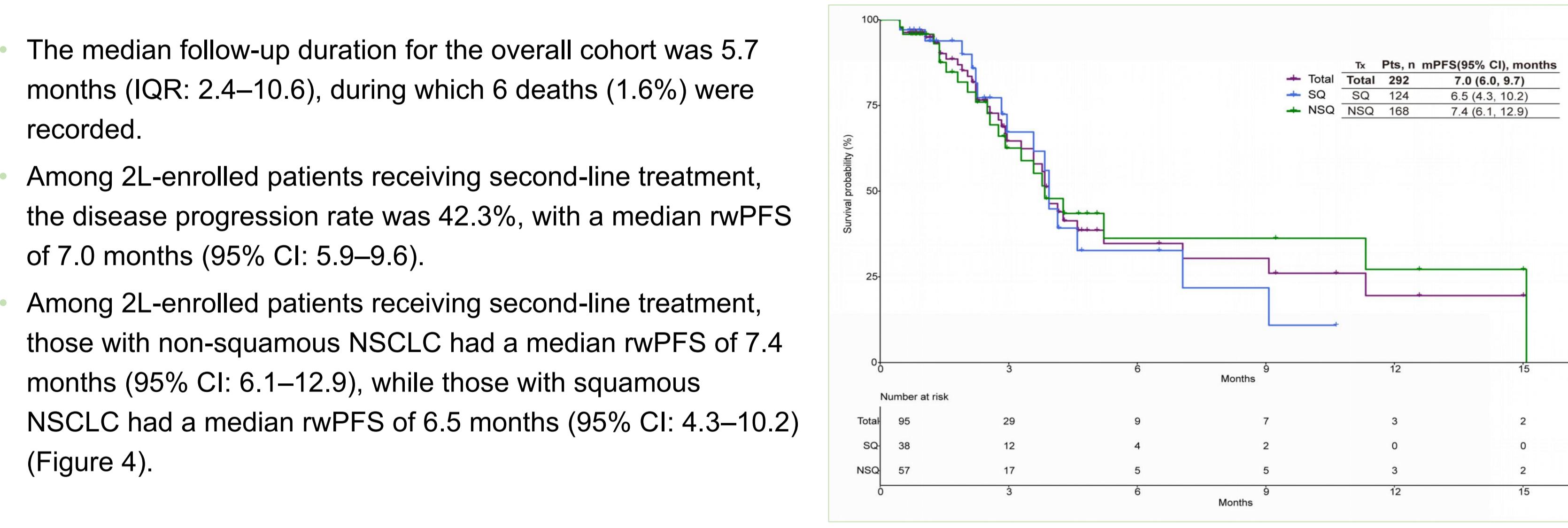
Abbreviations:

1L, first-line; 2L, second-line; 3L, third-line; AE, adverse event; AGA, actionable genomic alterations; ECOG, eastern cooperative oncology group; NA, not available; NSCLC, non-small-cell lung cancer; rwOS, real-world overall survival; rwPFS, real-world progression-free survival; rwTTD, time to treatment discontinuation; rwTTNT, time to next treatment or death; TKI, tyrosine kinase inhibitors.

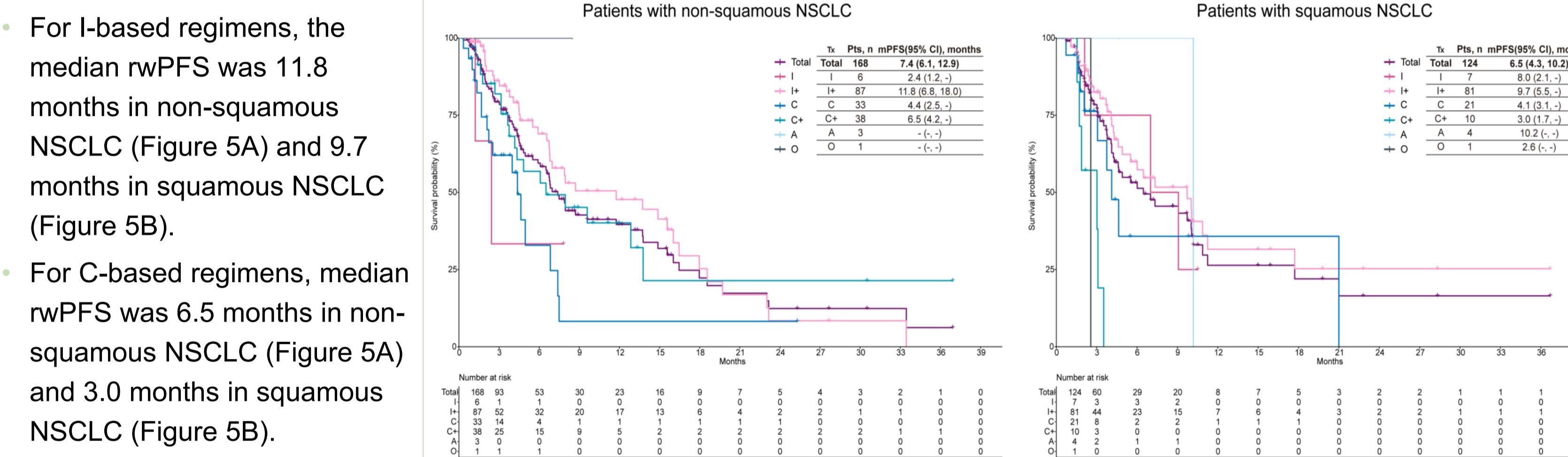
Disclosures:


All authors declare no competing interests. Leilei Ma is employed by Daiichi Sankyo (China) Holdings Co., Ltd.

Poster presented at European Society of Medical Oncology Asia (ESMO Asia) 2025; Singapore, Republic of Singapore; December 5-7 2025 by Hanxiao Chen.


Corresponding author email address: ohjerry@163.com.

Results


Figure 3. Sankey diagrams of treatment sequences among 2L-enrolled patients.

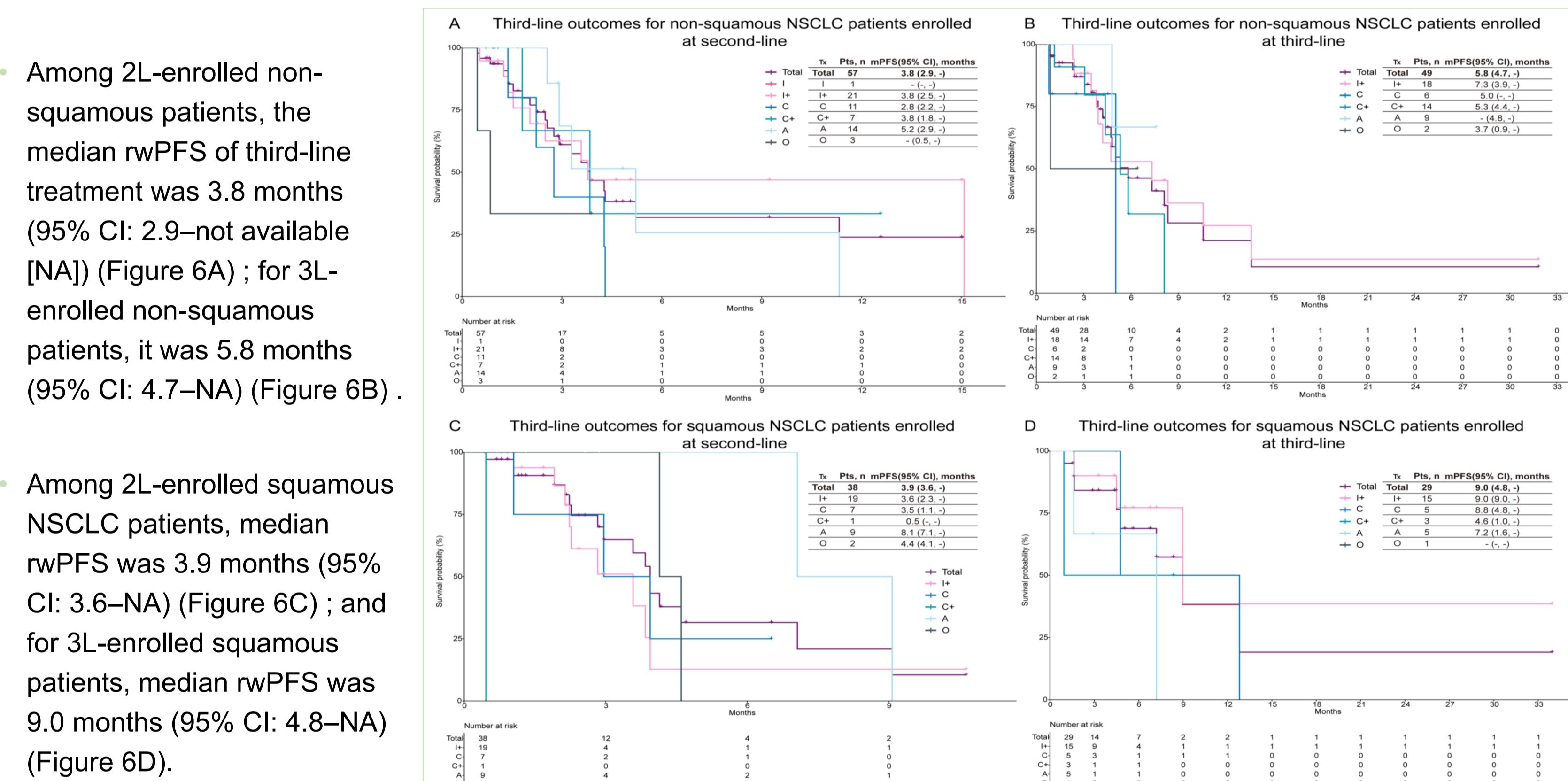

Figure 4. Median rwPFS by pathological subtype in second-line therapy for 2L-enrolled patients.

Figure 5. Median rwPFS by treatment regimen in 2L-enrolled patients, stratified by histological subtype.

Figure 6. Median rwPFS in patients with non-squamous or squamous NSCLC, stratified by enrollment line.

Table 2. Summary of adverse events (AEs).

- During the study period, 50 patients (13.1%) experienced at least one AE, with a total of 94 AEs recorded.
- AEs led to treatment discontinuation in 12 patients (3.1%), treatment interruption in 4 (1.0%), and dose modification in 4 (1.0%).
- It is important to note that the incidence of AEs was likely underreported due to incomplete documentation by clinicians.

Variables	Number of events, n	Number of cases, n (%)	Variables	Number of events, n	Number of cases, n (%)
Any AE	94	50 (13.1)	Common AEs		
AE severity			Myelosuppression	32	25 (6.5)
Grade 1	11	6 (1.6)	Gastrointestinal reactions	21	21 (5.5)
Grade 2	14	13 (3.4)	Skin and mucosal abnormalities	7	7 (1.8)
Grade 3	11	9 (2.4)	Fatigue	4	4 (1.0)
Grade 4	4	4 (1.0)	Infection	10	9 (2.4)
Unknown	54	33 (8.6)	Anemia	4	4 (1.0)
Impact of AEs on treatment			Cardiac dysfunction	3	3 (0.8)
No impact	62	32 (8.4)	AE outcome		
Treatment discontinuation at current line	12	12 (3.1)	Remission	44	26 (6.8)
Treatment interruption	12	4 (1.0)	No change	3	2 (0.5)
Dose adjustment	5	4 (1.0)	Unknown	47	31 (8.1)
Unknown	3	2 (0.5)			

Conclusion

- The RECAP study characterized treatment distribution and effectiveness across therapy lines, revealing that I+C was most frequently used in the second-line setting, whereas A+C predominated in third-line treatment.
- Immunotherapy was commonly administered across treatment lines in this population. Immune-based combination therapies may confer greater clinical benefit in both second-line and third-line settings.

Acknowledgments:

This study was sponsored by Daiichi Sankyo (China) Holdings Co., Ltd. In July 2020, AstraZeneca entered into a global development and commercialization collaboration agreement with Daiichi Sankyo for Datopotamab Deruxtecan (Dato-DXd). Medical writing support for the development of this poster, under the direction of the authors, was provided by Jiaheng Yu, MM, of Shanghai MedSci Healthcare Co. Ltd (Shanghai, China), and was funded by Daiichi Sankyo (China) in accordance with Good Publication Practice (GPP) guidelines (<http://www.ismpp.org/gpp-2022>).

References:

- Zeng, H., et al., Lancet Public Health, 2021. 6(12): p. e877-e887.
- Tan, A.C. and D.S.W. Tan, J Clin Oncol, 2022. 40(6): p. 611-625.
- Cheng, Y., T. Zhang, and Q. Xu, MedComm (2020), 2021. 2(4): p. 692-729.