Low rates of haemorrhagic stroke, not increased by age, renal/hepatic impairment, concomitant anti-platelet use and high CHA₂DS₂-VASc scores, in the 4-year follow-up of ETNA-AF-Europe

Doralisa Morrone¹, Richa Chhabra², Eva-Maria Fronk², Paulus Kirchhof³, Raffaele De Caterina^{1*} on behalf of the ETNA-AF-Europe investigators

¹University of Pisa, and Cardiology Division, Pisa University Hospital, 56124 Pisa, Italy; ²Dailchi Sankyo Europe GmbH, Munich, Germany; ³University Heart and Vascular Center Hamburg, Department of Cardiology, Hamburg, Germany. *Presenting author.

BACKGROUND

- In patients with atrial fibrillation (AF), direct oral anticoagulants (DOACs) are preferred over vitamin K antagonists for stroke prevention; however, concerns remain over the perceived risk of bleeding associated with DOAC use.^{1,2}
- Long-term reporting of routine safety data are necessary to understand the risk-benefit balance and to ensure
 optimal use of oral anticoagulants in this patient population.³

PURPOSE

To report annualised rates of haemorrhagic stroke in various sub-populations of patients with AF treated with
edoxaban during the 4-year follow-up of ETNA-AF-Europe.

Figure 1. Annualised a) overall and b) on-edoxaban rates of haemorrhagic stroke

METHODS

- ETNA-AF-Europe was a post-authorisation, observational study conducted across 776 sites from 10 European countries, which assessed the risks and benefits of edoxaban use in patients with AF.
- Here, we present the annualised event rates of adjudicated haemorrhagic stroke during the 4-year follow-up that occurred in the overall population (on-/off-edoxaban), the on-edoxaban population in the full analysis set, and sub-populations stratified by age, renal impairment, hepatic impairment, chronic concomitant antiplatelet use and CHA₂DS₂-VASc score.

Errors base represent 95% confidence intervals. Adjudicated haemorrhapic stroke events were analysed. Thickdence also for 45 years for the 'on-edoxaban' events was <01 (0.00, 0.10). Renal impairment was defined as: Cockcrdf-Gault formula: \$80 mL/min or Ci<80 mL/min or ci investigator-reported renal disease (excluding Stage 1 chronic kidney disease) if these data or measurement of serum creatinine were not available. Hepatic impairment was considered present if the bilirubin value exceeded 2× ULN and the AST/ALT exceeded 3× ULN. It was also considered present if the investigator indicated its presence when laboratory values were not available.

AST/ALT, aspartate aminotransferase/alanine aminotransferase; CrCI, creatinine clearance; ULN, upper limit of normal

RESULTS

Baseline characteristics

- A total of 13,164 patients were included in the full analysis set, including 7461 (56.7%) men and 5703 (43.3%) women (Table 1).
- Patients aged ≥75 years, those with renal/hepatic impairment, chronic concomitant antiplatelet use and high CHA₂DS₂-VASc score were more likely to be frail in comparison with their counterparts (Table 1).
- CHA₂DS₂-VASc scores were higher for patients with renal impairment and chronic antiplatelet use in comparison with their counterparts (**Table 1**).

Rates of haemorrhagic stroke

• The overall and on-edoxaban annualised haemorrhagic stroke rates were low (number of events, % [95% confidence interval]): 36, 0.1 (0.05, 0.11) and 31, 0.1 (0.05, 0.10), respectively (Figure 1).

Overall and on-edoxaban annualised rates of haemorrhagic stroke in different subgroups

 The overall and on-edoxaban rates remained low in subgroups stratified by age, renal/hepatic impairment, chronic concomitant antiplatelet use and CHA₂DS₂-VASc scores (Figure 1).

Table 1. Baseline demographics and clinical characteristics

n (%) or median (IQR)	Total (n=13,164)	Age			Renal impairment		Hepatic impairment		Chronic concomitant antiplatelet use		CHA ₂ DS ₂ -VASc score (points)		
		<65 years (n=2000)	≥65 and <75 years (n=4458)	≥75 years (n=6706)	Yes (n=7576)	No (n=4933)	Yes (n=102)	No (n=11,857)	Yes (n=895)	No (n=12,269)	Low (0–1) (n=1473)	Moderate (2–4) (n=9205)	High (>4) (n=2164)
Age, years	75.0	59.0	70.0	80.0	78.0	68.0	73.0	75.0	75.0	75.0	62.0	75.0	80.0
	(68.0, 80.0)	(55.0, 62.0)	(68.0, 73.0)	(77.0, 84.0)	(73.0, 83.0)	(62.0, 74.0)	(67.0, 80.0)	(68.0, 80.0)	(69.0, 81.0)	(68.0, 80.0)	(56.0, 67.0)	(69.0, 80.0)	(76.0, 84.0)
Male	7461	1385	2642	3434	3751	3304	55	6661	607	6854	1357	5188	717
	(56.7)	(69.3)	(59.3)	(51.2)	(49.5)	(67.0)	(53.9)	(56.2)	(67.8)	(55.9)	(92.1)	(56.4)	(33.1)
Weight, kg	80.0	90.0	82.0	75.0	74.0	90.0	80.5	80.0	80.0	80.0	87.0	80.0	75.0
	(70.0, 90.0)	(78.0, 103.0)	(72.0, 94.0)	(66.0, 85.0)	(65.0, 83.0)	(80.0, 100.0)	(70.0, 97.0)	(69.0, 90.0)	(70.0, 90.0)	(70.0, 90.0)	(78.0, 100.0)	(69.0, 90.0)	(65.0, 85.0)
Frailty	1410	29	170	1211	1208	180	19	1349	143	1267	16	851	504
	(11.5)	(1.5)	(4.1)	(19.5)	(17.0)	(3.9)	(19.2)	(12.1)	(17.0)	(11.1)	(1.2)	(9.9)	(24.9)
CHA ₂ DS ₂ -	3.0	1.0	3.0	4.0	4.0	2.0	3.0	3.0	4.0	3.0	1.0	3.0	5.0
VASc*	(2.0, 4.0)	(1.0, 2.0)	(2.0, 3.0)	(3.0, 5.0)	(3.0, 4.0)	(2.0, 3.0)	(2.0, 4.0)	(2.0, 4.0)	(3.0, 5.0)	(2.0, 4.0)	(1.0, 1.0)	(2.0, 4.0)	(5.0, 6.0)
HAS-BLED [†]	2.0	0.0	2.0	2.0	2.0	1.0	3.0	2.0	3.0	2.0	1.0	2.0	2.0
	(1.0, 2.0)	(0.0, 1.0)	(1.0, 2.0)	(2.0, 3.0)	(2.0, 3.0)	(1.0, 2.0)	(2.0, 3.0)	(1.0, 2.0)	(2.0, 3.0)	(1.0, 2.0)	(0.0, 1.0)	(1.0, 2.0)	(2.0, 3.0)
Serum creatinine, mg/dL	0.96 (0.80, 1.14)	0.90 (0.80, 1.06)	0.94 (0.80, 1.10)	1.00 (0.83, 1.20)	1.04 (0.89, 1.24)	0.86 (0.74, 0.97)	0.93 (0.80, 1.12)	0.96 (0.80, 1.14)	1.03 (0.87, 1.23)	0.96 (0.80, 1.13)	0.96 (0.85, 1.09)	0.95 (0.80, 1.13)	1.00 (0.81, 1.23)
CrCl [‡] ,	68.88	100.33	78.90	57.14	58.25	96.43	69.49	68.70	63.75	69.31	93.45	68.78	56.17
mL/min	(52.73, 87.92)	(84.26, 118.55)	(65.00, 94.11)	(44.63, 70.56)	(46.20, 68.40)	(87.23, 110.31)	(55.08, 89.47)	(52.50, 87.80)	(49.28, 83.11)	(53.00, 88.29)	(78.49, 111.64)	(53.65, 86.71)	(42.93, 72.3
Renal impairment	7576 (60.6)	313 (16.5)	2018 (47.7)	5245 (82.2)	-	-	-	-	-	-	326 (23.3)	5352 (61.4)	1709 (81.1)
Renal	3582	254	916	2412	3069	513	35	3404	293	3289	178	2406	910
disease	(29.4)	(13.7)	(22.3)	(38.8)	(41.7)	(10.6)	(36.5)	(29.5)	(34.6)	(29.0)	(13.1)	(28.4)	(44.0)
Hepatic impairment	102 (0.9)	16 (0.9)	41 (1.0)	45 (0.7)	-	-	-	-	-	-	12 (0.9)	72 (0.9)	13 (0.6)
Chronic hepatic disease	175 (1.5)	32 (1.8)	62 (1.5)	81 (1.3)	103 (1.4)	71 (1.5)	39 (38.2)	135 (1.2)	12 (1.4)	163 (1.5)	18 (1.4)	118 (1.4)	33 (1.6)
History of antiplatelet	2913 (22.1)	345 (17.3)	933 (20.9)	1635 (24.4)	1850	935 (19.0)	17 (16.7)	2645 (22.3)	895 (100.0)	2018 (16.4)	200 (13.6)	1895 (20.6)	745 (34.4)

"Modified CHA_DS_VASc score (heart failure [1 point], hypertension [1 point], 275 years old [2 points], diabetes mellius [1 point], stroker[IASCE [2 points], vascular disease [1 point], aged 65 to 74 years [1 point], finale set [1 point], "Modified HAS-BLED (hypertension [1 point], CGI 540 mLminn or liver disease [1 or 2 points], stroke history [1 point], point may beeding or predisposition to bleeding [1 point], aged >65 years [1 point], medication usage predisposing to bleeding or alcohol usage [1 or 2 points]). "Values cutside of the 5–150 grange were considered missing for CrCI CCCI, creating clearance; 108, Interquartle range; SEE, systemic emobile event; TLA, transient ischeramic attack

CONCLUSIONS

- The overall and on-edoxaban annualised rates of adjudicated haemorrhagic stroke were low and were not increased by non-modifiable risk factors, such as age, renal or hepatic impairment, concomitant antiplatelet use or CHA₂DS₂-VASc score during the 4-year follow-up
- The overall and on-edoxaban annualised adjudicated haemorrhagic stroke rates reported in ETNA-AF-Europe were comparable with the incidence rates reported in age-stratified populations in the literature (incidence/100 person-years), 55–64 years: 0.06 (0.04, 0.07); 65–74 years: 0.10 (0.09, 0.10); 75–84 years: 0.20 (0.10, 0.20)

Presented at: European Society of Cardiology (ESC) 2024, London, UK, 30 August – 2 September 2024

REFERENCES

1. Steffel J, et al. Europace. 2021;23:1612–76 2. Kirchhof P, et al. Int J Cardiol. 2024;408:132118 3. Calsolaro V, et al. Eur J Intern Med. 2021;86:91–7 4. Wang S, et al. Front Neurol. 2022;13:915813

ACKNOWLEDGEMENTS

This ePoster was sponsored by Dalichi Sankyo Europe GmbH, Munich, Germany. Writing and editorial support were provided by Meghan Bradley from inScience Communications, Springer Healthcare Ltd, UK, and funded by Dalichi Sankyo Europe GmbH, Munich, Germany. 7

