Dai Maruyama¹, Pierluigi Porcu², Kensei Tobinai¹, Pamela B. Allen³, Kenji Ishitsuka⁴, Kunihiro Tsukasaki⁵, Shigeru Kusumoto⁶, Tomoko Narita⁶, Francine Foss⁷, Nobuhiko Yamauchi¹⁵, Noha Biserna¹⁶, Ai Inoue¹⁶, Masaya Tachibana¹⁵, Yoshiyuki Hizukuri¹⁶, Steven M. Horwitz¹⁷, Eric Jacobsen¹⁸

¹National Cancer Center Hospital, Tokyo, Japan; ¹Department of Hematology, International Medical University, Saitama, Japan; ¹National Cancer Center, Saitama Medical University, Saitama, Japan; ¹National Cancer Center, Saitama, Japan; ¹National Center, Saitama, Japan; ¹National Cancer Center, Saitama, Japan; ¹National Center, Saitama, Japan; ³National Center, Saitama, Sait School of Medicine, New Haven, CT, US; 8National Cancer Center Hospital, Okinawa, Japan; 10Department of Hematology, Nagasaki University of the Ryukyus Hospital, Okinawa, Japan; 14Department of Hematology, Nagasaki University of the Ryukyus Hospital Organization Nagasaki, Japan; 14Department of Hematology, Nagasaki, Japan; 14Department of Hematology, Nagasaki, Japan; 14Department of Hematology, Nagasaki University of the Ryukyus Hospital, Okinawa, Japan; 14Department of Hematology, Nagasaki, Japan; 14Department Oncology, The Institute of Medical Science, University of Tokyo, Tokyo, Tokyo, Japan; ¹⁴Department of Hematology, Tokyo Metropolitan Bokutoh Hospital, Tokyo, Japan; ¹⁵Daiichi Sankyo Co., Ltd., Tokyo, Japan; ¹⁶Daiichi Sankyo Co., Ltd., Tokyo, Japan; ¹⁶Daiichi Sankyo Co., Ltd., Tokyo, Japan; ¹⁷Memorial Sloan Kettering Cancer Center, New York, NY, US; ¹⁸Dana-Farber Cancer Institute, Boston, MA, US

PURPOSE

 To describe the safety, tolerability, and preliminary efficacy of valemetostat tosylate (valemetostat) in patients with relapsed/refractory (R/R) non-Hodgkin lymphomas (NHLs) enrolled in the DS3201-A-J101 ("J101"; NCT02732275) trial

CONCLUSIONS

- Valemetostat monotherapy showed promising clinical activity in patients with R/R peripheral T-cell lymphoma (PTCL), R/R adult T-cell leukemia/ lymphoma (ATLL), and R/R B-cell NHL (B-NHL)
- Valemetostat induced durable responses, with median durations of response (DORs) of > 1.5 years (y) in all three NHL subtypes
- Valemetostat demonstrated acceptable safety and tolerability
- Treatment-emergent adverse events (TEAEs) were generally manageable; cytopenias were common but did not require treatment discontinuation
- Ongoing trials of valemetostat in patients with R/R PTCLs include the phase 2 monotherapy VALENTINE-PTCL01 trial (NCT04703192)

Copies of this poster obtained through this QR code are for personal use only and may not be reproduced without written permission of the authors.

BACKGROUND

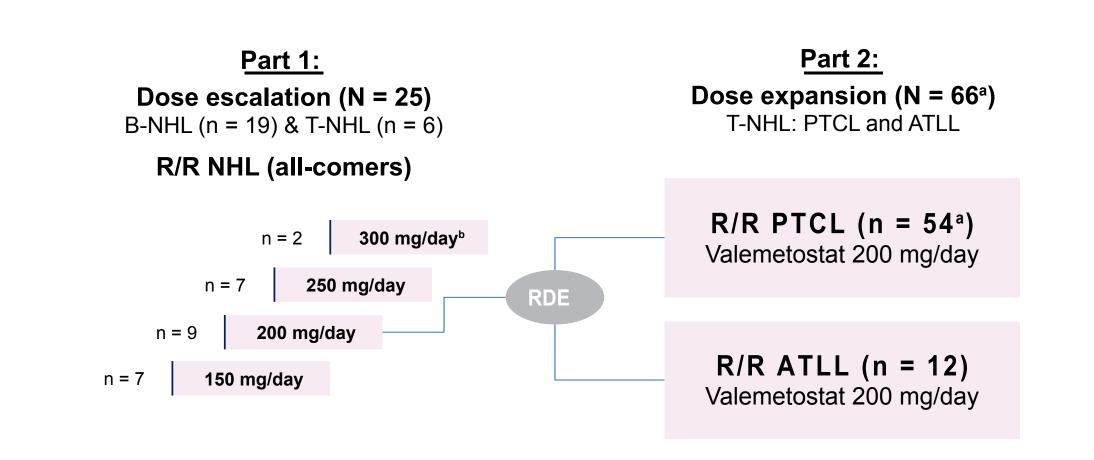
- Treatment options are limited and prognosis is often poor for patients with R/R NHLs
- Enhancer of zeste homolog (EZH)2 and its close homolog EZH1 catalyze the trimethylation of histone H3 at lysine 27 (H3K27me3), leading to transcriptional repression^{1,2}
- Valemetostat is a novel, potent, and selective dual inhibitor of EZH2 and EZH1 that suppresses aberrant H3K27me3, thereby promoting antitumorigenic processes^{2–4}
- Valemetostat shows broad-spectrum antitumor activity in preclinical models of NHL^{3,5,6}
- Valemetostat monotherapy is approved in Japan for the treatment of R/R ATLL^{7,8}
- Here, we report primary outcomes for patients with R/R NHLs treated with valemetostat monotherapy in the J101 trial

METHODS

Study design

- Adult patients eligible for participation in the J101 trial had confirmed B-NHLs or T-cell NHLs (T-NHLs) as defined by the World Health Organization 2016 classification criteria and had relapsed from, were refractory to, or ineligible for standard therapies
- The trial included a dose-escalation part followed by a dose-expansion part (Figure 1)
- Patients with B- or T-NHLs were enrolled in the dose-escalation part and received valemetostat once daily at doses of 150–300 mg in continuous 28-day treatment cycles; in the doseexpansion part, patients with T-NHLs received valemetostat at the recommended dose for expansion (RDE) of 200 mg

Efficacy analysis


• Efficacy assessments included objective response rate (ORR), complete response (CR) rate, and DOR based on the International Working Group 2007 response criteria

H3K27me3 analysis

- H3K27me3 levels were assessed in normal granulocytes via flow cytometry
- Whole blood was collected before dosing on day 1 of cycle 1 (C1D1), on C2D1 ± 5 days (Japan), or on or after C2D1 (US), and at end of treatment in patients in Japan who discontinued before completion of cycle 1

Figure 1. Study design, key inclusion criteria, and endpoints of the J101 trial

DS3201-A-J101 ("J101"; NCT02732275): Multicenter, single-arm, phase 1, dose-escalation and -expansion trial of valemetostat in R/R B- or T-NHLs

Primary endpoints: Safety (including DLTs, TEAEs), RP2D, and PK parameters Secondary endpoints: MTD, efficacy

RESULTS

Characteristic

Key inclusion criteria

R/R to ≥ 1 prior line of therapy

Age ≥ 20 (Japan) or ≥ 18 (US) y
ECOG PS score 0 or 1

Patient enrollment and disposition

- Patients were enrolled from April 2016 through June 2021
- Median treatment duration at data cutoff (Dec 31, 2022) was 130 days (range, 1–2112)
- Eight (8/71; 11%) patients with T-NHL and 2/19 (11%) patients with B-NHL were receiving ongoing treatment

Demographics and baseline characteristics

• The most common PTCL subtypes were PTCL, not otherwise specified (PTCL, NOS; n = 26, 46%) and angioimmunoblastic T-cell lymphoma (AITL; n = 23, 40%); the most common B-NHL subtypes were diffuse large B-cell lymphoma (DLBCL; n = 7, 37%) and follicular lymphoma (FL; n = 7, 37%; Table 1)

Table 1. Baseline demographic and disease characteristics

	(N = 90)	(n = 57)	(n = 14)	(n = 19)
Age, y, median (range)	67.5 (26–88)	68 (26–83)	66.5 (37–78)	66 (44–88)
Sex, n (%)				
Male	53 (59)	35 (61)	8 (57)	10 (53)
Female	37 (41)	22 (39)	6 (43)	9 (47)
Country of enrollment, n (%)				
US	44 (49)	39 (68)	5 (36)	0
Japan	46 (51)	18 (32)	9 (64)	19 (100)
ECOG PS, n (%)				
0	44 (49)	21 (37)	8 (57)	15 (79)
1	45 (50)	36 (63)	5 (36)	4 (21)
≥ 2	1 (1) ^a	0	1 (7) ^a	0
Cancer type, n (%)				
B-NHL	19 (21)	0	0	19 (100)
DLBCL	7 (8)	0	0	7 (37)
FL	7 (8)	0	0	7 (37)
Indolent BCL excluding FL	3 (3)	0	0	3 (16)
MCL	1 (1)	0	0	1 (5)
Other BCL	1 (1)	0	0	1 (5)
T-NHL	71 (79)	57 (100)	14 (100)	0
ATLL	14 (16)	0	14 (100)	0
PTCL	57 (63)	57 (100)	0	0
ALCL	2 (2)	2 (4)	0	0
AITL	23 (26)	23 (40)	0	0
PTCL, NOS	26 (29)	26 (46)	0	0
Other TCL ^b	6 (7)	6 (11)	0	0
Prior lines of therapy, median (range)	2 (0–8)	2 (1–8)	2.5 (1–8)	2 (0–6)
EZH2 GOF mutation	1 (2)°	O_{q}	0 ^e	1 (11) ^f
Prior HCT, n (%)	18 (20)	16 (28)	2 (14)	0
Allogeneic	4 (4)	2 (4)	2 (14)	0
Autologous	14 (16)	14 (25)	0	0

Data are n (%) or median (range). One patient with an ECOG PS score of 4 was eligible for the study at the time of screening (with a performance score of 0); this ECOG PS score worsened to 4 on C1D1, which was the time point when the data presented here were collected; blincludes patients with SPTCL (n = 2), ENKTCL (nasal type; n = 1), hepatospleni T-cell lymphoma (n = 1), nodal PTCL with TFH phenotype (n = 1), and primary cutaneous gamma-delta T-cell lymphoma (n = 1); EZH2 mutation status assessed in a total of 49 patients; dEZH2 mutation status assessed in 35 patients with PTCL; dEZH2 mutation status assessed in 5 patients with ATLL; dEZH2 mutation status assessed in 9 patients with B-NHL. ALCL, anaplastic large-cell lymphoma; BCL, B-cell lymphoma; ENKTCL, extranodal NK/T-cell lymphoma; GOF, gain of function; HCT, hematopoietic cell transplantation MCL, mantle cell lymphoma; NK, natural killer; SPTCL, subcutaneous panniculitis-like T-cell lymphoma; TCL, T-cell lymphoma; TFH, T follicular helper.

Preliminary efficacy

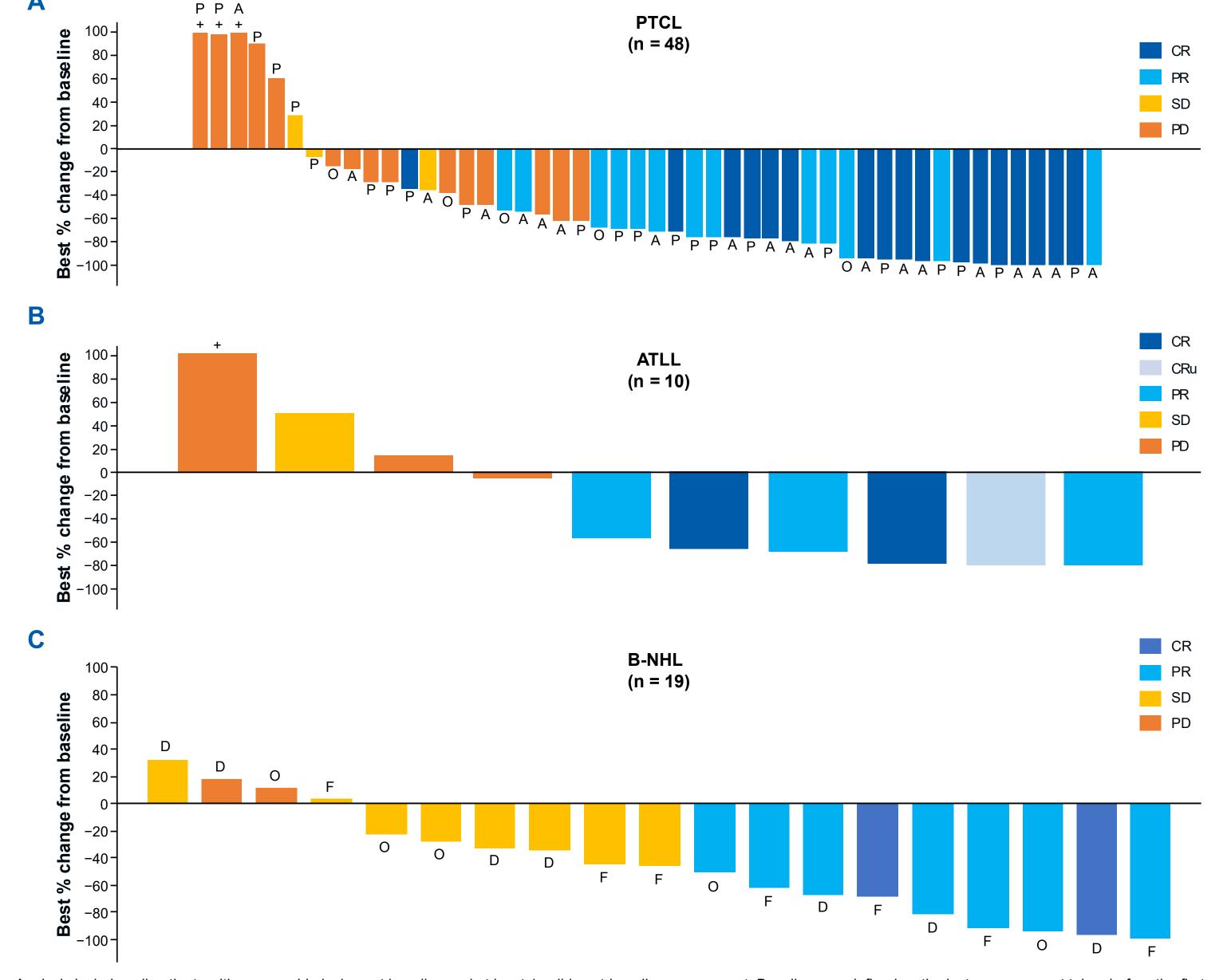
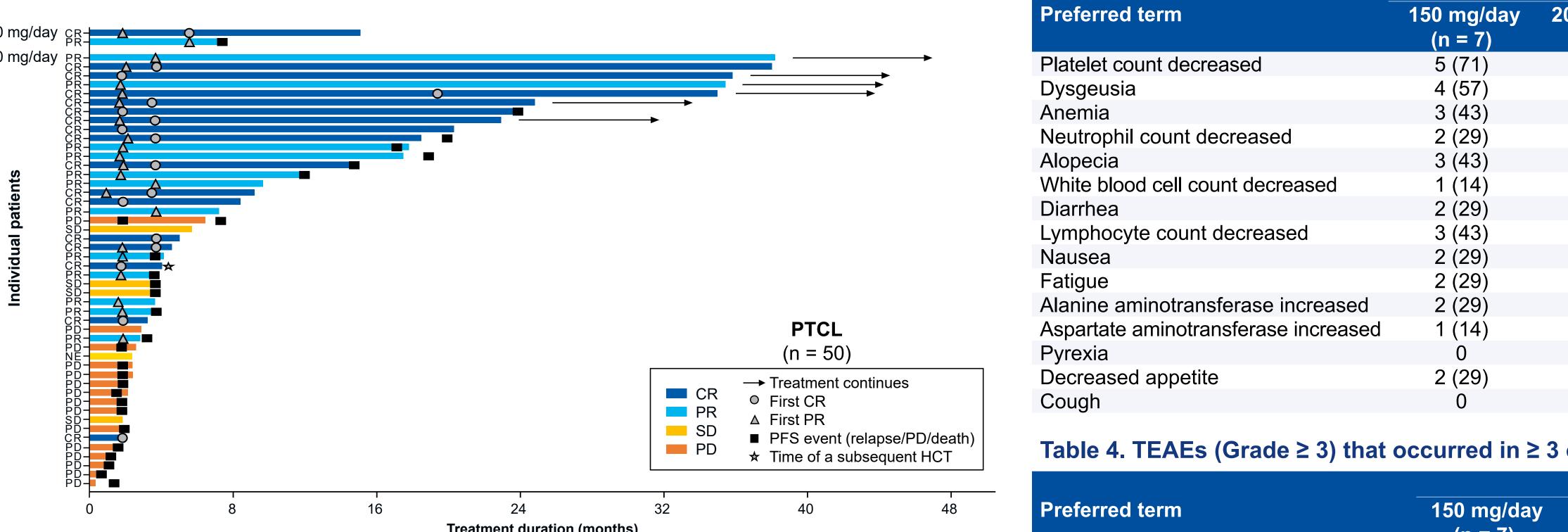
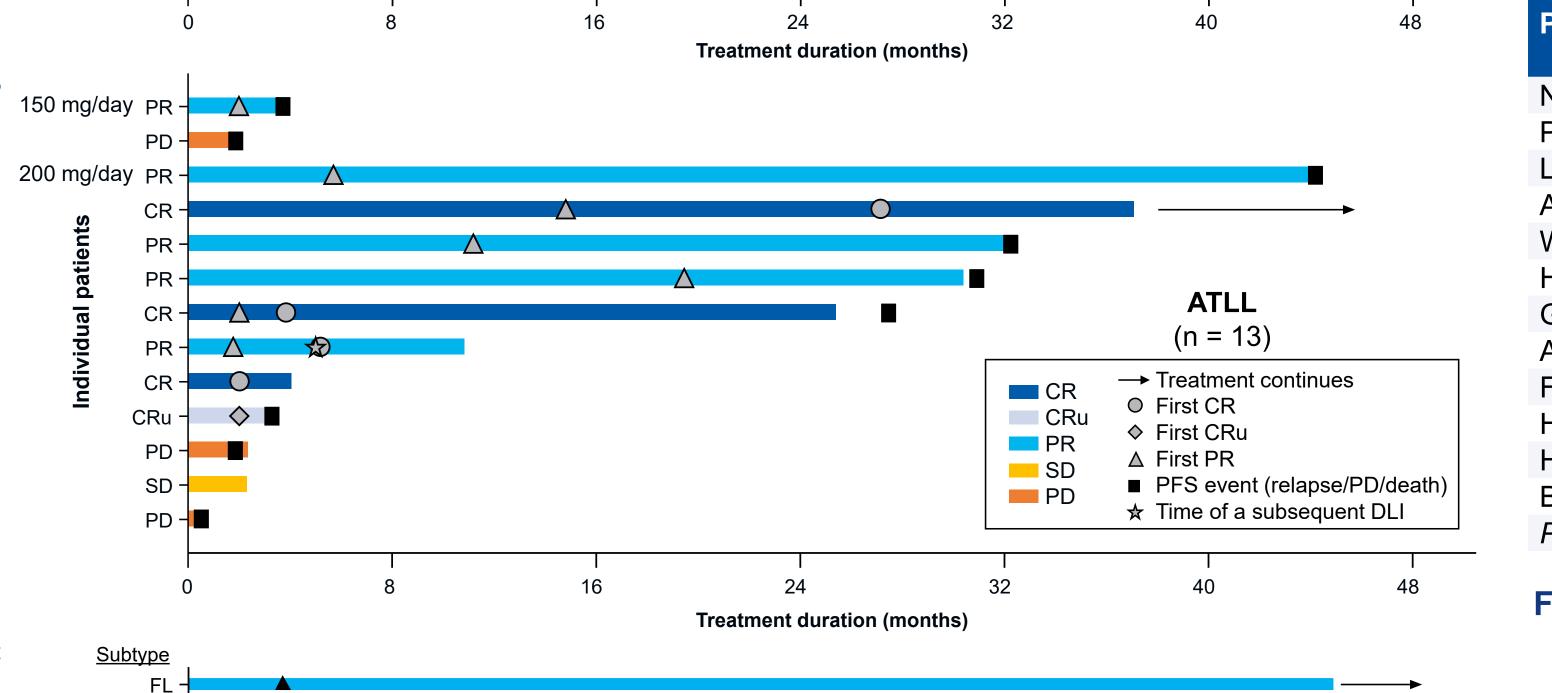
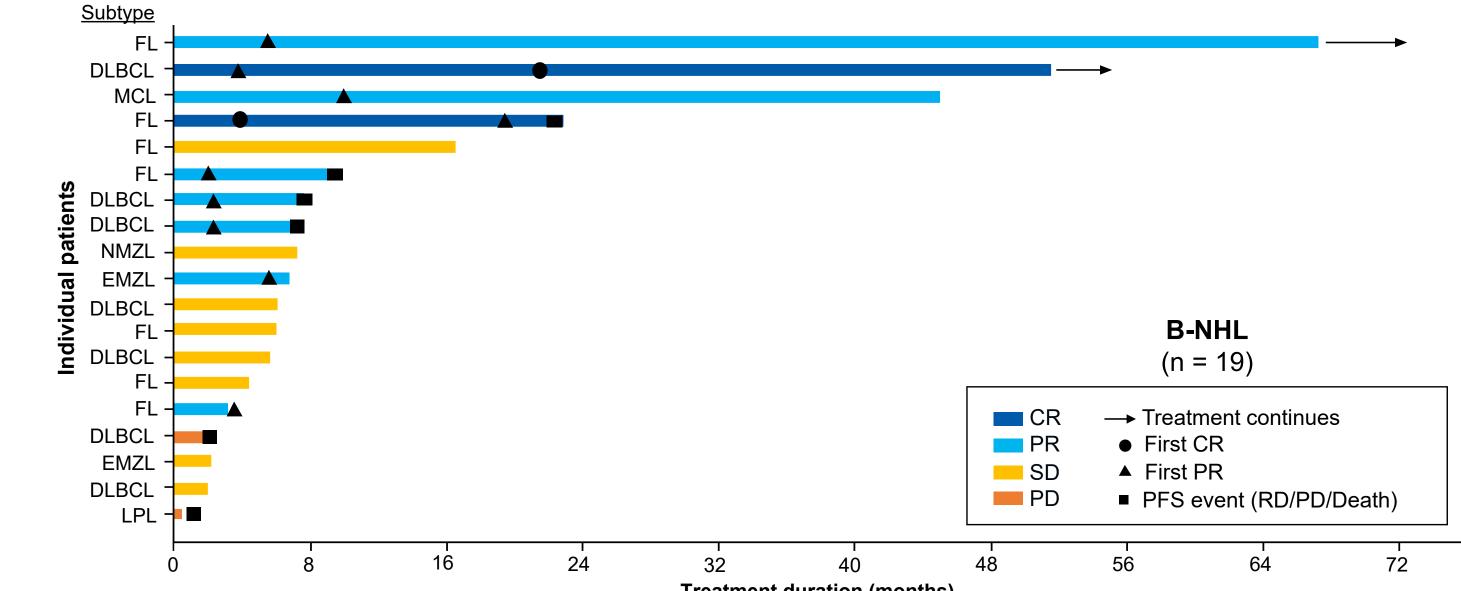

- The ORRs were 55% (30/55; 95% confidence interval [CI], 40.6–68.0) in patients with PTCL, 64% (9/14; 95% CI, 35.1–87.2) in patients with ATLL, and 47% (9/19; 95% CI, 24.4–71.1) in patients with B-NHL (Table 2)
- Median progression-free survival (PFS) was 7.7 months (95% CI, 3.6–19.8) in patients with PTCL, 4.1 months (95% CI, 1.9–32.2) in patients with ATLL, and 22.1 months (95% CI, 7.2–not reached [NR]) in patients with B-NHL
- Thirty-two (67%) patients with PTCL (Figure 2A), 6 (60%) with ATLL (Figure 2B), and 9 (47%) with B-NHL (Figure 2C) experienced a maximum reduction of > 50% from baseline in measurable target lesions
- Exposure duration and clinical responses for individual patients with PTCL, ATLL, and B-NHL are shown in Figure 3A–C

Table 2. Clinical response

	PTCL (n = 55 ^a)			D NIIII
AITL (n = 22)	PTCL, NOS (n = 26)	All PTCL (n = 55°)	ATLL (n = 14)	B-NHL (n = 19)
10 (45)	7 (27)	17 (31)	4 (29)	2 (11)
4 (18)	6 (23)	13 (24)	5 (36)	7 (37)
1 (5)	3 (12)	4 (7)	1 (7)	8 (42)
5 (23)	8 (31)	15 (27)	3 (21)	2 (11)
1 (5)	0	1 (2)	0	0
1 (5)	2 (8)	5 (9)	1 (7)	0
14 (64)	13 (50)	30 (55)	9 (64)	9 (47)
40.7, 82.8	29.9, 70.1	40.6, 68.0	35.1, 87.2	24.4, 71.1
1.9 (1.0–3.75)	1.8 (1.6–5.6)	1.8 (1.0–5.6)	1.9 (1.7–19.4)	3.7 (1.9–10.1)
21.9 (0.03+ to 22.0)	NR (0.03+ to 32.7+)	21.9 (0.03+ to 32.7+)	21.2 (1.4–38.7)	18.4 (0.03+ to 64.0+)
1.9, 22.0	4.0, NR	10.2, NR	1.4, 38.7	5.3, NR
9 (64)	9 (69)	20 (67)	3 (33)	5 (56)
	(n = 22) 10 (45) 4 (18) 1 (5) 5 (23) 1 (5) 1 (5) 14 (64) 40.7, 82.8 1.9 (1.0-3.75) 21.9 (0.03+ to 22.0) 1.9, 22.0 9 (64)	(n = 22) (n = 26) 10 (45) 7 (27) 4 (18) 6 (23) 1 (5) 3 (12) 5 (23) 8 (31) 1 (5) 0 1 (5) 2 (8) 14 (64) 13 (50) 40.7, 82.8 29.9, 70.1 1.9 1.8 (1.0-3.75) (1.6-5.6) 21.9 (0.03+ to 22.0) NR (0.03+ to 22.0) to 32.7+) 1.9, 22.0 4.0, NR 9 (64) 9 (69)	(n = 22) (n = 26) (n = 55a) 10 (45) 7 (27) 17 (31) 4 (18) 6 (23) 13 (24) 1 (5) 3 (12) 4 (7) 5 (23) 8 (31) 15 (27) 1 (5) 0 1 (2) 1 (5) 2 (8) 5 (9) 14 (64) 13 (50) 30 (55) 40.7, 82.8 29.9, 70.1 40.6, 68.0 1.9 1.8 1.8 (1.0-3.75) (1.6-5.6) (1.0-5.6) 21.9 (0.03+ to 32.7+) to 32.7+) 1.9, 22.0 4.0, NR 10.2, NR 9 (64) 9 (69) 20 (67)	(n = 22) (n = 26) (n = 55°) 10 (45) 7 (27) 17 (31) 4 (29) 4 (18) 6 (23) 13 (24) 5 (36) 1 (5) 3 (12) 4 (7) 1 (7) 5 (23) 8 (31) 15 (27) 3 (21) 1 (5) 0 1 (2) 0 1 (5) 2 (8) 5 (9) 1 (7) 14 (64) 13 (50) 30 (55) 9 (64) 40.7, 82.8 29.9, 70.1 40.6, 68.0 35.1, 87.2 1.9 1.8 1.8 1.9 (1.0-3.75) (1.6-5.6) (1.0-5.6) (1.7-19.4) 21.9 (0.03+ NR (0.03+ 21.9 (0.03+ 21.2 to 22.0) to 32.7+) to 32.7+) (1.4-38.7) 1.9, 22.0 4.0, NR 10.2, NR 1.4, 38.7


Figure 2. Change in target lesions from baseline in patients with (A) PTCL, (B) ATLL, and (C) B-NHL


calculated using the number of patients with response as denominator. CRu, uncertified CR; NE, not evaluable; PD, progressive disease; PR, partial response; TTR, time to



dose of study drug. For each patient, the best percent change from baseline in the sum of area for all target lesions was represented by a vertical bar. Some patients were assessed as having PD because of a new lesion, even though the sum of area in target lesions was reduced by more than 50%. Disease subtypes are shown in panel A as "A" for AITL, "D" for DLBCL, "F" for FL, "P" for PTCL, NOS, and "O" for other lymphomas.

Figure 3. Exposure duration and clinical responses in patients with (A) PTCL, (B) ATLL, and (C) B-NHL

Swimmer's plot excludes patients without available response assessments. DLI, donor lymphocyte infusion; EMZL, extranodal marginal zone lymphoma LPL. lymphoplasmacytic lymphoma: NMZL, nodal marginal zone lymphoma; RD, relapsed disease

Safety and tolerability

- All 90 patients with T-NHLs and B-NHLs experienced at least 1 TEAE, including 78 (87%) who had treatment-related TEAEs
- The most common TEAEs (any grade) were platelet count decreased (58%), dysgeusia (50%), anemia (42%), neutrophil count decreased (33%), and alopecia (33%; Table 3); the most common Grade ≥ 3 TEAEs were cytopenias, including decreased neutrophil count (23%), platelet count (20%), and lymphocyte count (19%; Table 4)
- TEAEs required treatment discontinuation for 7 (8%) patients, dose reduction for 9 (10%) patients, and treatment interruption for 42 (47%) patients
- MTD was not reached between 150 and 300 mg/day based on the modified continual reassessment method (mCRM); RP2D/RDE was determined to be 200 mg/day based on the mCRM, safety findings, preliminarily efficacy, and PK/pharmacodynamic analyses

Gene mutation analysis

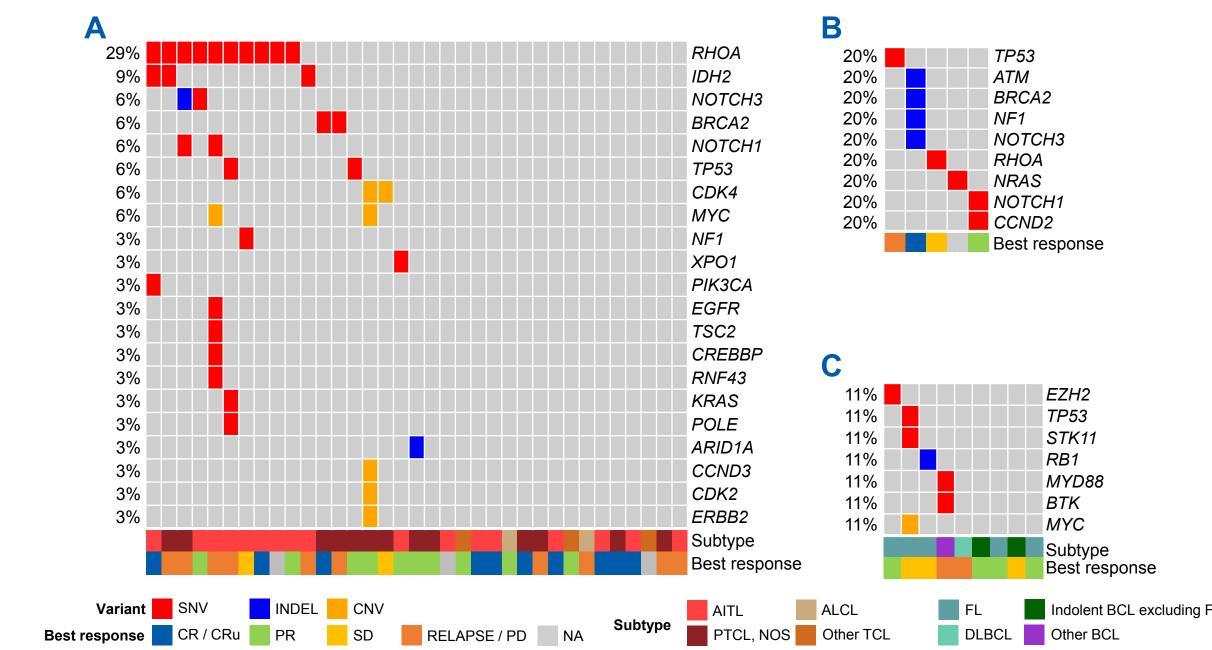
- In patients with PTCL, Ras homolog family member A (RHOA) was identified as the most commonly mutated gene (29% [10/35]; Figure 4)
- A GOF EZH2 mutation was identified in 1 patient with R/R FL; this patient achieved a PR

H3K27me3 analysis

 Biomarker analyses demonstrated on-target pharmacodynamic activity of valemetostat in reducing H3K27me3 levels in evaluated tissue specimens

- Higher area under the plasma concentration-time curve during the dosing interval (AUC,) of valemetostat was associated with marginal H3K27me3 reductions in normal granulocytes (Figure 5)

Table 3. TEAEs (all grades) that occurred in ≥ 15% of patients with NHLs


	Valemetostat dose				All dose	
Preferred term	150 mg/day	200 mg/day	250 mg/day	300 mg/day	levels	
	(n=7)	(n = 74)	(n = 7)	(n = 2)	(N = 90)	
Platelet count decreased	5 (71)	38 (51)	7 (100)	2 (100)	52 (58)	
Dysgeusia	4 (57)	34 (46)	6 (86)	1 (50)	45 (50)	
Anemia	3 (43)	30 (41)	3 (43)	2 (100)	38 (42)	
Neutrophil count decreased	2 (29)	23 (31)	3 (43)	2 (100)	30 (33)	
Alopecia	3 (43)	23 (31)	4 (57)	0	30 (33)	
White blood cell count decreased	1 (14)	20 (27)	4 (57)	2 (100)	27 (30)	
Diarrhea	2 (29)	20 (27)	4 (57)	0	26 (29)	
Lymphocyte count decreased	3 (43)	12 (16)	6 (86)	2 (100)	23 (26)	
Nausea	2 (29)	18 (24)	1 (14)	0	21 (23)	
Fatigue	2 (29)	13 (18)	2 (29)	0	17 (19)	
Alanine aminotransferase increased	2 (29)	13 (18)	2 (29)	0	17 (19)	
Aspartate aminotransferase increased	1 (14)	13 (18)	1 (14)	0	15 (17)	
Pyrexia	0	13 (18)	2 (29)	0	15 (17)	
Decreased appetite	2 (29)	13 (18)	0	0	15 (17)	
Cough	0	14 (19)	0	0	14 (16)	

TCL-391

Table 4. TEAEs (Grade ≥ 3) that occurred in ≥ 3 of patients with NHLs

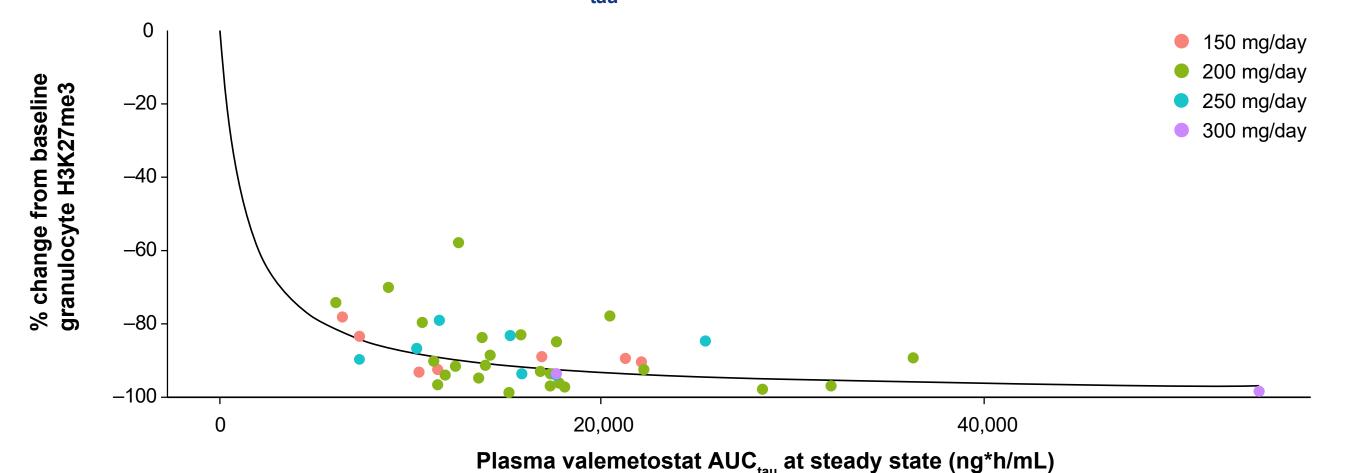

Preferred term	Valemetostat dose				All dose
	150 mg/day (n = 7)	200 mg/day (n = 74)	250 mg/day (n = 7)	300 mg/day (n = 2)	levels (N = 90)
Neutrophil count decreased	0	17 (23)	2 (29)	2 (100)	21 (23)
Platelet count decreased	2 (29)	13 (18)	1 (14)	2 (100)	18 (20)
Lymphocyte count decreased	2 (29)	10 (14)	5 (71)	0	17 (19)
Anemia	2 (29)	10 (14)	1 (14)	1 (50)	14 (16)
White blood cell count decreased	1 (14)	10 (14)	1 (14)	1 (50)	13 (14)
Hypertension	0	5 (7)	0	0	5 (6)
Gamma-glutamyltransferase increased	1 (14)	4 (5)	1 (14)	0	6 (7)
Aspartate aminotransferase increased	0	4 (5)	0	0	4 (4)
Febrile neutropenia	0	3 (4)	0	0	3 (3)
Hypokalemia	0	3 (4)	0	0	3 (3)
Hypophosphatemia	0	3 (4)	0	0	3 (3)
Blood alkaline phosphatase increased	0	3 (4)	0	0	3 (3)
Pneumocystis jirovecii pneumonia	1 (14)	2 (3)	0	0	3 (3)

Figure 4. Gene mutation profiles of patients with (A) PTCL, (B) ATLL, and (C) B-NHL

sene mutation profiles at baseline were evaluated for (A) PTCL (n = 35), (B) ATLL (n = 5), and (C) B-NHL (n = 9). The most highly mutated gene was RHOA, which was found in (28.6%) patients with PTCL, including 8 (22.9%) patients with AITL. In our study cohort, p.Gly17Val was the most common mutation, and was found in all patients with AITL which is in line with previous studies.^{9,10} There was 1 patient carrying an SNV in *EZH2* representing p.Tyr646Ser from the B-NHL cohort (FL), which has been reported as a GOF mutation in past studies.¹¹ The percentage on the y-axis indicates frequency of patient(s) harboring a mutation in a corresponding gene among each cohort. CNV, copy number variant; INDEL, insertion-deletion; NA, not applicable; SNV, single nucleotide variant.

Figure 5. Change in H3K27me3 across AUC, levels by dose cohort in the biomarker analysis set

REFERENCES

Herviou L. et al. *Oncotarget* 2016;7:2284–2296. 2. Nakagawa M. Kitabayashi I. *Cancer Sci* 2018:109:2342–2348 3. Yamagishi M, et al. Cell Rep 2019;29:2321-2337e7 4. Fujikawa D, et al. *Blood* 2016;127:1790–1802. Hama Y. et al. Blood 2019:134:4642.

7. Izutsu K, et al. Blood 2023;141:1159-1168. 8. EZHARMIA® (valemetostat tosilate). [package insert]. Tokyo, Japan: Daiichi Sankyo; 2022 9. Manso R, et al. *Blood* 2014;123:2893–2894. 10. Yoo HY, et al. *Nat Genet* 2014;46:371–375.

ACKNOWLEDGMENTS

6. Honma D, et al. Cancer Sci 2017;108:2069-2078

- The authors thank the patients, families, and caregivers for their participation, and the study staff for their contributions
- The authors thank the following investigators for contributing to the enrollment of patients and study design: Jonathan Brammer, Kisato Nosaka, Jia Ruan, Atae Usunomiya, Jie
- This study is sponsored by Daiichi Sankyo Co., Ltd. • Editorial support was provided by Luca Scrivano, PhD, and Korin Albert, PhD, of Excerpta Medica, funded by Daiichi Sankyo Co., Ltd., and in accordance with
- ^aInvestigators are listed in alphabetical order of surname.