

Assessment of Long-term Use Versus Discontinuation of Direct Oral Anticoagulant After Catheter Ablation for Atrial Fibrillation – RYOUMA Registry Subanalysis –

Yuka Oda¹, Akihiko Nogami¹, Yuki Komatsu¹, Itsuro Morishima², Kenichi Hiroshima³, Ritsushi Kato⁴, Satoru Sakagami⁵, Fumiharu Miura⁶, Keisuke Okawa⁷, Kikuya Uno⁸, Koichiro Kumagai⁹, Takashi Kurita¹⁰, Kyoko Soejima¹¹, Kazutaka Aonuma¹, Tomoko Ishizu¹

¹University of Tsukuba, ²Ogaki Municipal Hospital, ³Kokura Memorial Hospital, ⁴Saitama Medical University International Medical Center, ⁵Kanazawa Medical Center, ⁶Hiroshima Prefectural Hospital, ⁷Kagawa Prefectural Hospital, ⁸Tokyo Heart Rhythm Hospital, ⁹Fukuoka Sanno Hospital, ¹⁰Kindai University School of Medicine, ¹¹Kyorin University School of Medicine For the RYOUMA Investigators

This research was sponsored by DAIICHI SANKYO Company, Limited, for "corporate-initiated clinical research"

The Japanese Circulation Society COI Disclosure

Name of Author : Yuka Oda

The author have no financial conflicts of interest to disclose concerning the presentation.

<u>Background</u>

➤Catheter ablation (CA) is an effective therapeutic strategy for atrial fibrillation (AF).

JCS2024 KOBE

➢ Periprocedural oral anticoagulation (OAC) is crucial for preventing periprocedural thromboembolism.

However, the optimal long-term OAC after successful AF ablation is not well defined.

The 88th Annual Scientific Meeting of

the Japanese Circulation Society

Table 4Anticoagulation strategies: pre-, during, and postcatheter ablation of AF

<u>2017</u>	Recommendation	Class	LOE
HRS/EHRA/ECAS/ APHRS/SOLAECE	Postablation Patients in whom discontinuation of anticoagulation is being based on patient values and preferences should consider u continuous or frequent ECG monitoring to screen for AF rec	ndergoing	C-EO

Recommendations for stroke risk management peri-catheter ablation

2020	Recommendations	Class ^a	Level ^b
<u>ESC</u>	After AF catheter ablation, it is recommended that:		6
	• Long-term continuation of systemic anticoagulation beyond 2 months post ablation is based on the patient's stroke risk profile and not on the apparent success or failure of the ablation procedure.	•	C

	If a patient has a high thromboembolic risk profile (eg, CHADS2 risk score of ≥2), then the patient	
Cardiovascular Society	should continue oral anticoagulation even after successful AF ablation.	

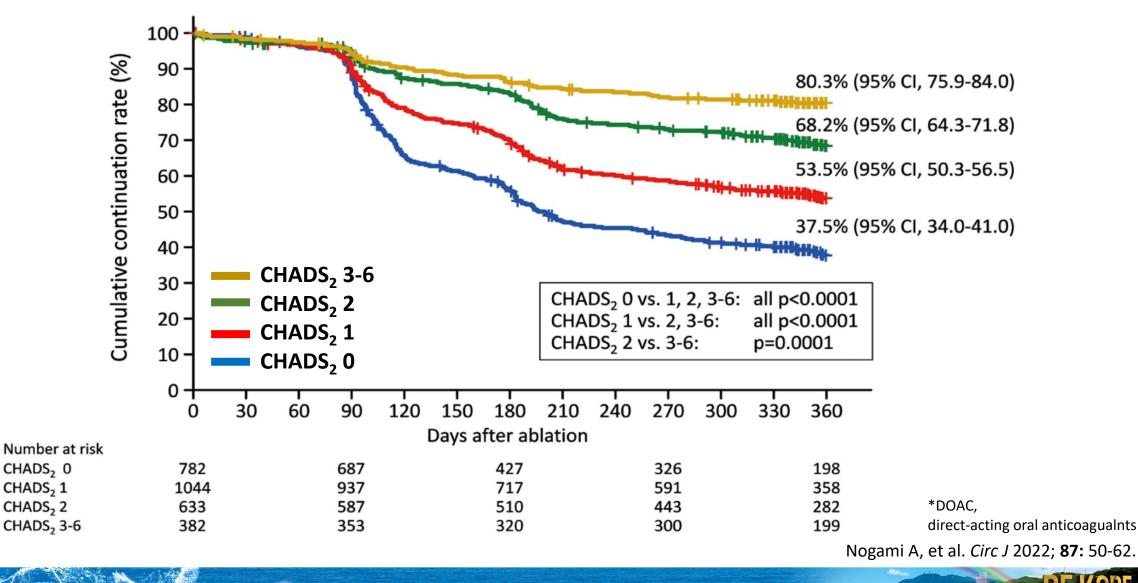
	Table 13. Recommendations and Evidence Levels for Anticoagulation Strategies Pre-, Intra-, and I	Post-Abla	ition of A	trial Fibril	lation
2021		COR	LOE	GOR (MINDS)	LOE (MINDS)
JCS/JHRS	For patients with a high risk for embolism (CHADS₂ score ≥2), continuation of systemic anticoagulation with warfarin or a DOAC should be considered even after 3 months of AF ablation, considering AF recurrence during the follow-up period	lla	С	C1	VI

<u>(Real world ablation therapY</u>

with anti-cOagUlants in Management of Atrial fibrillation)

➢ Prospective, multicenter, observational study from 2017 to 2018.

➢ Total of 62 institution in Japan were included.

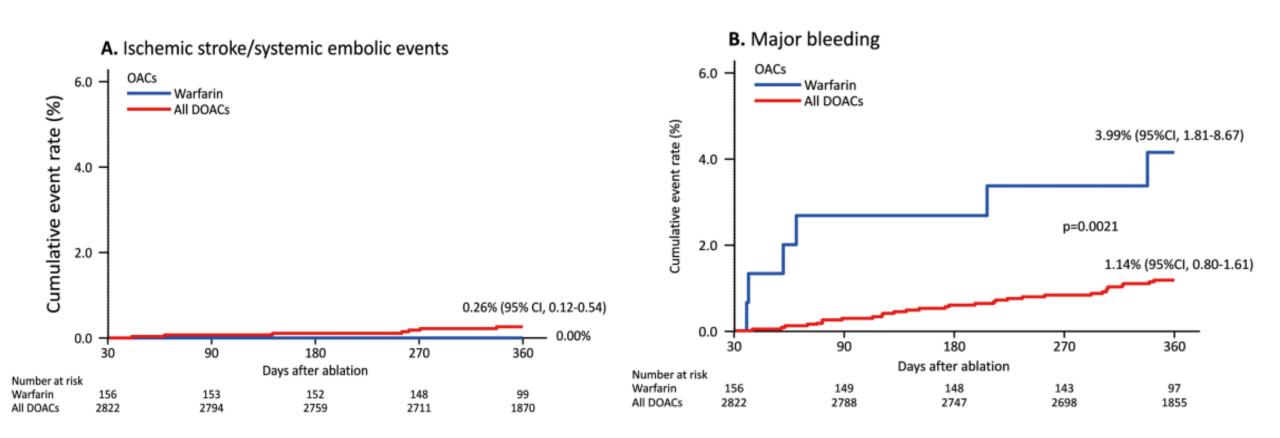

JCS2024 KOBE

➢Patients with non-valvular AF who were scheduled to undergo CA were eligible.

The 88th Annual Scientific Meeting of

the Japanese Circulation Society

UMIN000026092


The 88th Annual Scientific Meeting of the Japanese Circulation Society

JCS2024 KOBE

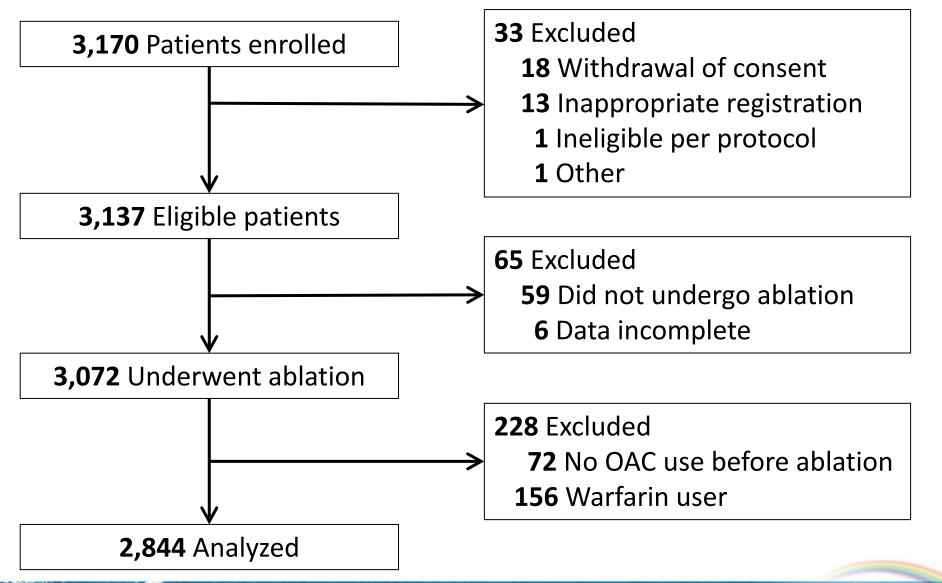
Cumulative Event Rate of

Ischemic Stroke/Systemic Embolic Events (SEEs) or Major Bleeding

XMajor bleeding was defined according to the International Society on Thrombosis and Haemostasis criteria.

Nogami A, et al. Circ J 2022; 87: 50-62.

JCS2024 KOBE



To investigate the relationship between the direct-acting OACs (DOACs) use status and the incidence of adverse events (ischemic strokes/SEEs, major bleeding, and allcause death) after CA of AF.

Patient Flow Diagram

JCS2024 KOBE

	n=2844	
Age, median (IQR), years	68.0 (60.0-73.0)	Como
Male sex, n (%)	2016 (70.9)	Hy
Body weight, median (IQR), kg	64.9 (56.9-73.7)	Dia
BMI, median (IQR), kg/m ²	23.8 (21.8-26.3)	He
Creatinine clearance, median (IQR), mL/min	76.9 (61.4-96.0)	Kid
AF type		He
Paroxysmal, n (%)	1821 (64.0)	He
Persistent, n (%)	711 (25.0)	Cer
Long-standing persistent, n (%)	312 (11.0)	Th
CHADS ₂ score, median (IQR)	1.0 (0.0-2.0)	De
CHADS ₂ score ≥2, n (%)	1016 (35.7)	Antip
CHADS ₂ score ≥1, n (%)	2062 (72.5)	Туре
CHA ₂ DS ₂ -VASc score, median (IQR)	2.0 (1.0-3.0)	Da
CHA₂DS₂-VASc score ≥3, n (%)	1191 (41.9)	Riv
CHA_2DS_2 -VASc score ≥ 2 , n (%)	1856 (65.3)	Ар
HAS-B(L)ED score, median (IQR)	2.0 (1.0-3.0)	Ede
HAS-B(L)ED score ≥3, n (%)	914 (32.1)	

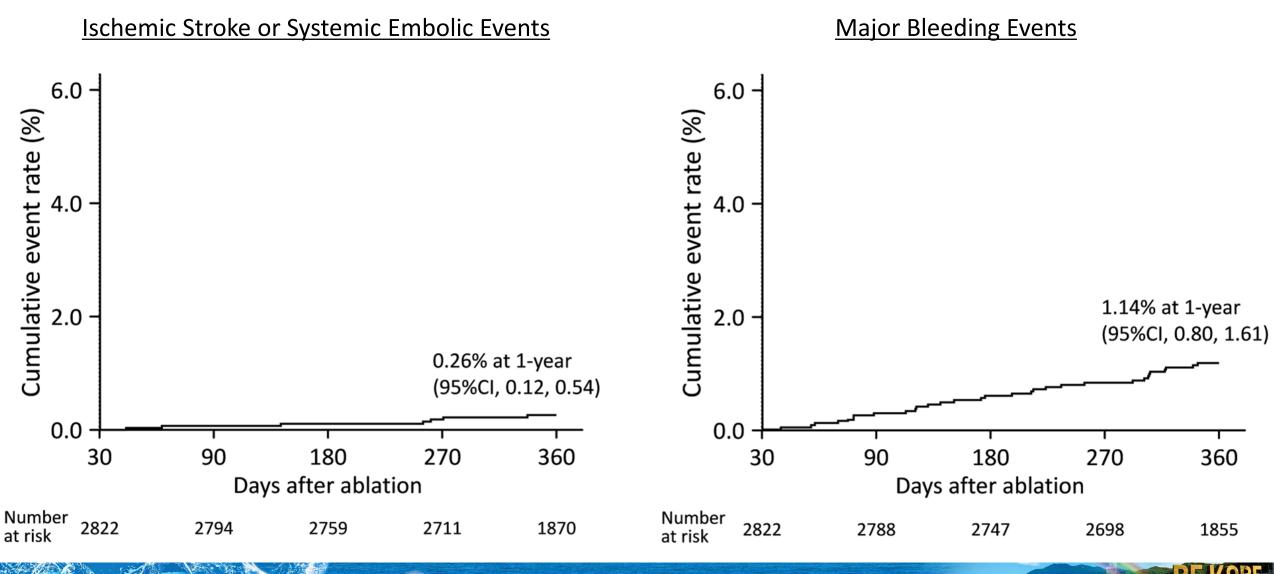
Comorbidity, n (%)	
Hypertension	1722 (60.5)
Diabetes	483 (17.0)
Heart disease	756 (26.6)
Kidney disease	229 (8.1)
Hemodialysis	2 (0.1)
Hepatic disorder	176 (6.2)
Cerebrovascular disease	314 (11.0)
Thromboembolism	98 (3.4)
Dementia	15 (0.5)
Antiplatelets use, n (%)	247 (8.7)
Type of DOACs, n (%)	
Dabigatran	377 (13.3)
Rivaroxaban	784 (27.6)
Apixaban	766 (26.9)
Edoxaban	917 (32.2)

The 88th Annual Scientific Meeting of the Japanese Circulation Society

JCS2024 KOBE

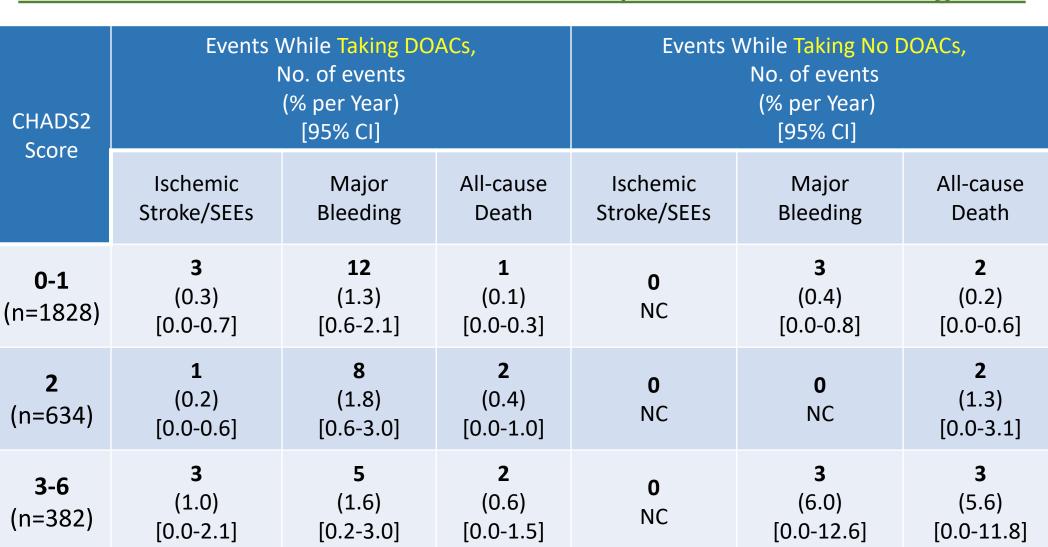
B

Patient Baseline Characteristics


According to the CHADS2 Score Categories and DOAC Continuation

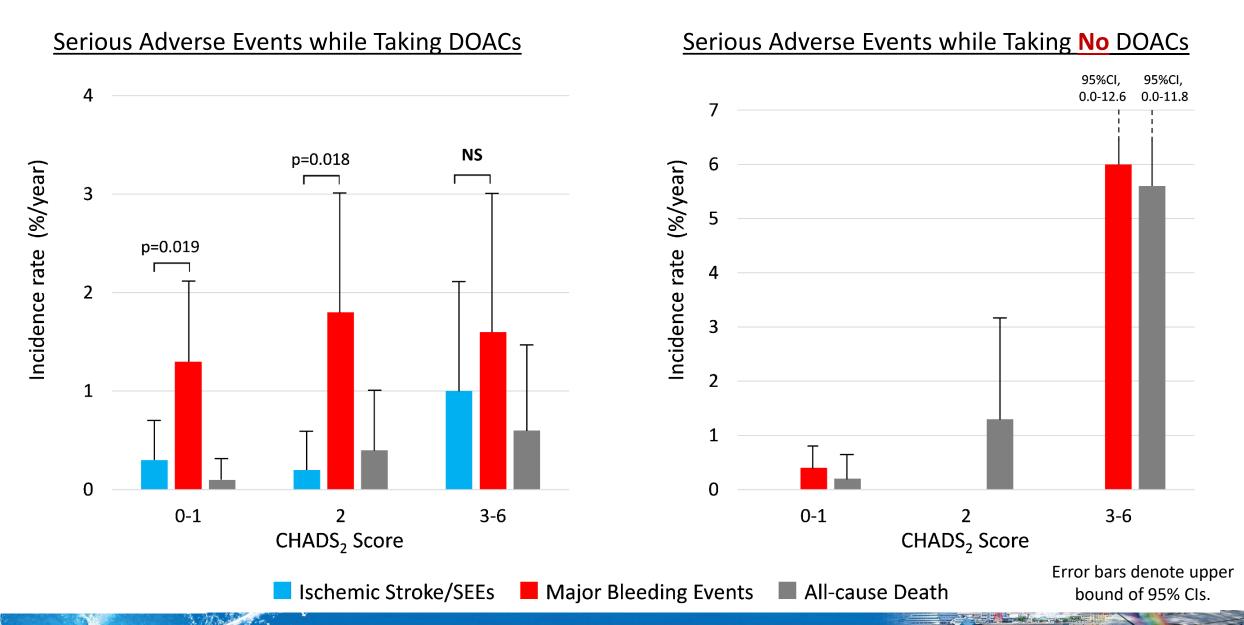
CHADS2 Score		0-1			2			3-6	
DOAC Status	Continued	Discontinued	p-value	Continued	Discontinued	p-value	Continued	Discontinued	p-value
	N =880	N =948		N =441	N =193		N =309	N =73	
Age, median (IQR), years	67.0 (60.0-71.0)	63.0 (54.0-69.0)	p<0.001	72.0 (66.0-77.0)	70.0 (63.0-77.0)	NS	75.0 (69.0-78.0)	75.0 (71.0-80.0)	NS
Male sex, n (%)	621 (70.6)	724 (76.4)	p=0.005	283 (64.2)	129 (66.8)	NS	210 (68.0)	49 (67.1)	NS
Body weight, median (IQR), kg	65.2 (56.6-74.2)	66.5 (59.2-74.5)	p=0.037	63.6 (56.2-72.2)	62.8 (56.8-75.1)	NS	62.3 (55.0-71.0)	61.5 (54.0-70.9)	NS
Creatinine clearance, median (IQR), mL/min	78.9 (64.5-98.6)	86.1 (70.3-105.6)	p<0.001	70.1 (54.4-86.20)	71.8 (57.1-92.8)	NS	63.9 (50.1-76.3)	56.7 (48.9-78.7)	NS
Paroxysmal AF, n (%)	519 (59.0)	669 (70.6)	p<0.001	275 (62.4)	124 (64.2)	NS	184 (59.5)	50 (68.5)	NS
CHADS2 score, median (IQR)	1.0 (0.0-1.0)	0.0 (0.0-1.0)	p<0.001	2.0 (2.0-2.0)	2.0 (2.0-2.0)	NS	3.0 (3.0-4.0)	3.0 (3.0-4.0)	NS
CHA2DS2-VASc score, median (IQR)	2.0 (1.0-2.0)	1.0 (0.0-2.0)	p<0.001	3.0 (3.0-4.0)	3.0 (3.0-4.0)	NS	5.0 (4.0-5.0)	5.0 (4.0-6.0)	NS
HAS-B(L)ED score, median (IQR)	2.0 (1.0-2.0)	1.0 (1.0-2.0)	p<0.001	2.0 (2.0-3.0)	2.0 (2.0-3.0)	NS	3.0 (3.0-4.0)	3.0 (2.0-5.0)	NS
Comorbidity, n (%)									
Hypertension	454 (51.6)	386 (40.7)	p<0.001	372 (84.4)	165 (85.5)	NS	280 (90.6)	65 (89.0)	NS
Heart disease	185 (21.0)	104 (11.0)	p<0.001	169 (38.3)	80 (41.5)	NS	182 (58.9)	36 (49.3)	NS
Malignancy	65 (7.4)	63 (6.6)	NS	66 (15.0)	36 (18.7)	NS	41 (13.3)	18 (24.7)	p=0.015

the Japanese Circulation Society

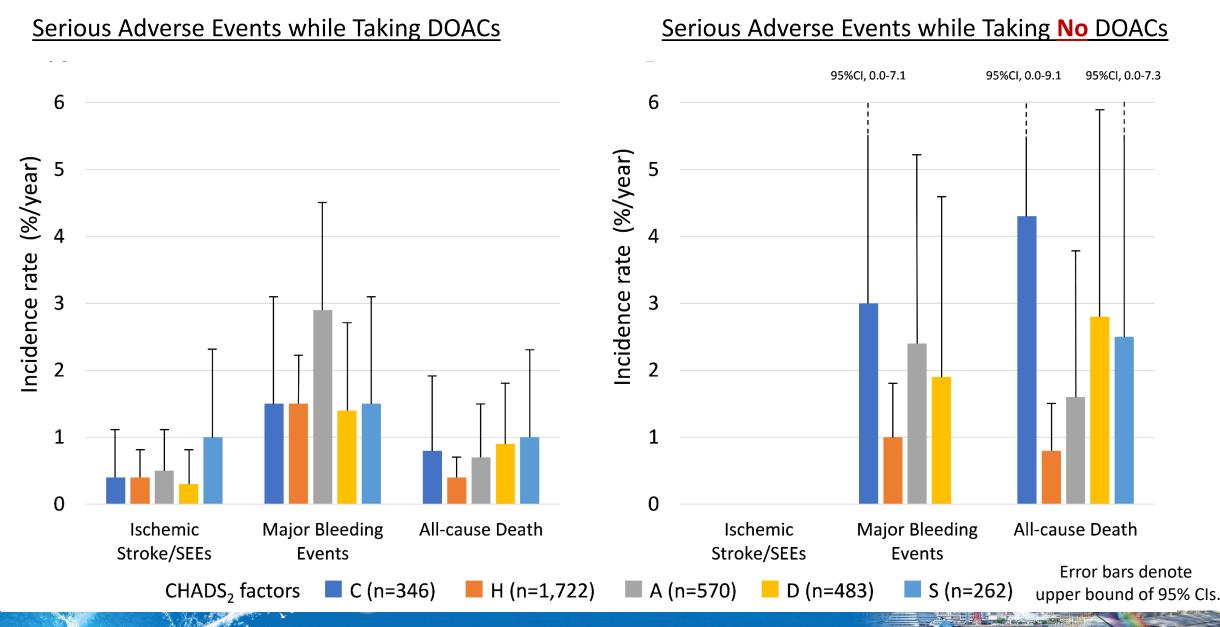

Kaplan-Meier Plot of the Time to the First Serious Adverse Events

JCS2024 KOBE

Serious Adverse Events After Ablation by CHADS2 Score Categories


RYOUMA

Serious Adverse Events per Year of Follow-up After Ablation


by CHADS2 Score Categories

Serious Adverse Events per Year of Follow-up After Ablation

by Individual CHADS2 Factors.

Main Findings

Discussion

- In patients with a CHADS2 score of 0-1, there were some differences between those who continued to take DOACs and those who discontinued (e.g., age, sex, body weight, AF type).
- 2. In patients who continued to take DOACs, the incidence rate of major bleeding was significantly higher than that of ischemic stroke in patients with a CHADS2 score of 0-1 and 2, but not in patients with a CHADS2 score of 3 or higher.

JCS2024 KOBE

The 88th Annual Scientific Meeting of

the Japanese Circulation Society

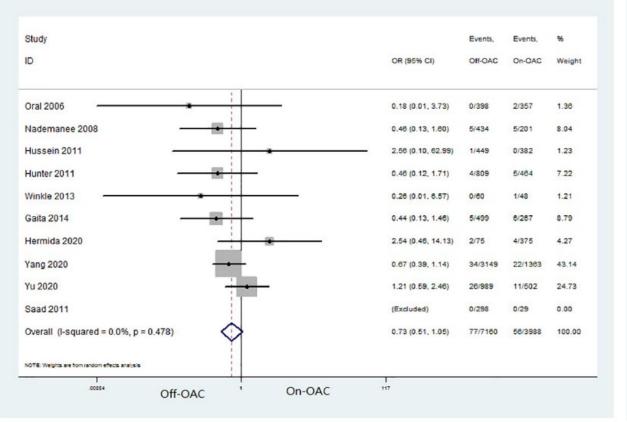
Previous Meta-analysis 1

	OAC cont	nued	OAC discont	tinued		Risk Ratio			Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year		M–H, Random, 95% Cl
Themistoclakis 2010	2	247	0	347	4.1%	7.02 [0.34, 145.50]	2010		
Yagishita 2011	2	53	0	29	4.1%	2.78 [0.14, 55.98]	2011		
Winkle 2013	1	48	0	60	3.7%	3.73 [0.16, 89.67]	2013		
Galta 2014	5	170	4	131	22.2%	0.96 [0.26, 3.52]	2014		
Uhm 2014	3	138	1	121	7.4%	2.63 [0.28, 24.96]	2014		
Riley 2014	4	253	2	101	13.2%	0.80 [0.15, 4.29]	2014		
Gallo 2016	2	364	1	411	6.5%	2.26 [0.21, 24.80]	2016		
Sjalander 2017	4	421	5	282	21.8%	0.54 [0.15, 1.98]	2017		
Llang 2018	4	121	3	139	17.1%	1.53 [0.35, 6.71]	2018		
Total (95% CI)		1815		1621	100.0%	1.21 [0.66, 2.23]			-
Total events	27		16						
Heterogeneity: Tau ² =	0.00; Chl ² -	4.77, 6	df = 8 (P = 0.	78); 1 ² =	0%			0.01	0,1 1 10 100
Test for overall effect:		-						0.01	0.1 1 10 100' Favors OAC continue Favors OAC discontinue
									ravors OAC continue ravors OAC discontinue

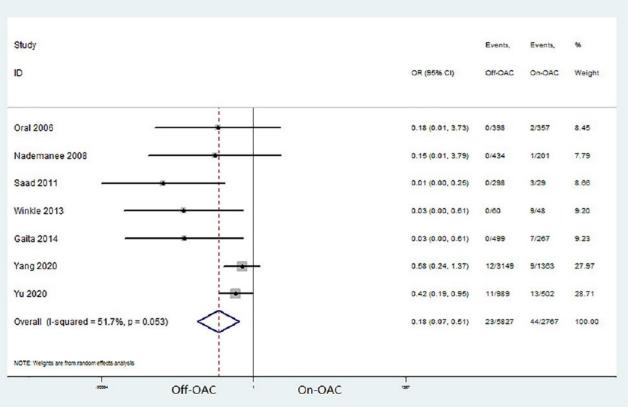
Figure 1.2: Systemic thromboembolism

	OAC conti	inued	OAC discont	inued		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% CI
Themistoclakis 2010	10	247	0	347	11.1%	29.47 [1.73, 500.52]	2010	
Winkle 2013	9	48	0	60	11.2%	23.65 [1.41, 396.37]	2013	· · · · · · · · · · · · · · · · · · ·
Galta 2014	4	170	0	121	10.5%	6.42 [0.35, 118.16]	2014	, ,
Riley 2014	3	253	0	101	10.2%	2.81 [0.15, 53.94]	2014	
Uhm 2014	2	138	1	121	15.7%	1.75 [0.16, 19.10]	2014	
Gallo 2016	6	364	1	411	20.0X	6.77 [0.82, 56.01]	2016	
Sjalander 2017	2	421	0	282	9.7%	3.35 [0.16, 69.58]	2017	
Llang 2018	13	121	0	39	11.4%	8.85 [0.54, 145.57]	2018	
Total (95% CI)		1762		1482	100.0%	6.50 [2.53, 16.74]		
Total events	49		2					
Heterogeneity: Tau ² = 0.00; Cht ² = 3.84, df = 7 (P = 0.80); t ² = 0% Test for overall effect: Z = 3.88 (P = 0.0001)							1	0.01 0.1 10 100 Favors OAC continue Favors OAC discontinue

Figure 1.3: Major bleeding


A. M. B. B. S. -

Atti V, et al. J Atr Fibrillation 2018; **11**: 2092.

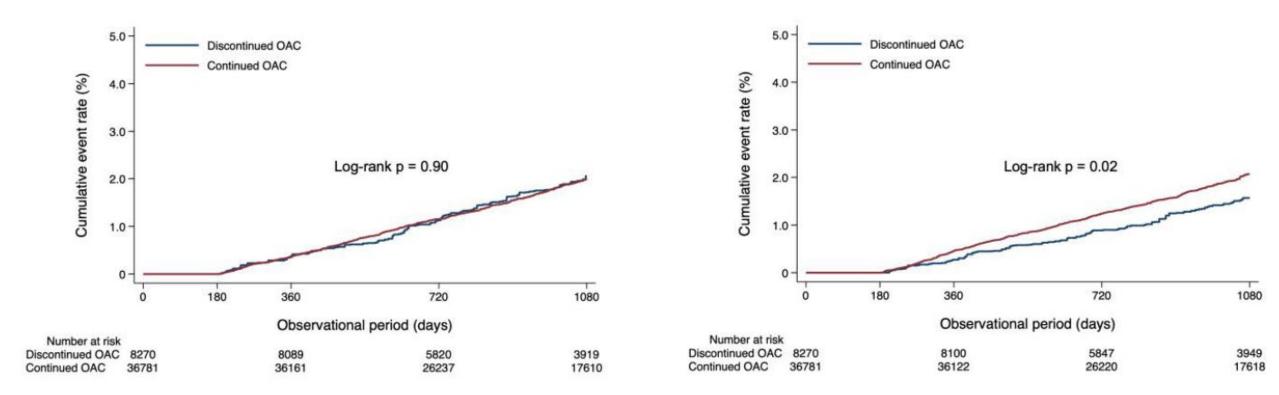

Previous Meta-analysis 2

Forest plot for thromboembolism event

Forest plot for major bleeding event

Liu XH, et al. PLoS One 2021; 16: e0253709.

JCS2024 KOBE


Data from the Japanese nationwide administrative claims database

JCS2024 KOBE

Thromboembolism (CHADS₂ = 2)

Major bleeding (CHADS₂ = 2)

The 88th Annual Scientific Meeting of

the Japanese Circulation Society

Kanaoka K, et al. EHJ 2024; 45: 522-534.

Study Limitations

- 1. The study was not a randomized trial.
- 2. The dosage of each DOAC was not taken into consideration.
- 3. Multivariate analysis could not be performed due to the small number of events after ablation.
- 4. Short follow-up period.

JCS2024 KOBE

- ➢ For patients with a CHADS2 score of 0-1 and 2, continuing DOACs after CA may be associated with a higher risk of major bleeding than ischemic stroke/SEEs.
- Further study would be needed to evaluate the safety of discontinuing DOACs after CA in patients with a CHADS2 score of 2.

