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Leveraging advanced human lung models to 
explore mechanisms underlying T-DXd-
associated interstitial lung disease (ILD)

Objective
• Use of human in-vitro lung mucosa models to explore the molecular mechanisms and pathways 

underlying trastuzumab deruxtecan (T-DXd)-related interstitial lung disease/pneumonitis 
(ILD/pneumonitis).

• Evaluate the role of target antigen (HER2) in T-DXd-induced lung epithelial changes.

Conclusions
• T-DXd can drive epithelial mechanisms and pathways associated with pulmonary fibrosis, 

inflammation, and damage, which are dysregulated events observed in ILD/pneumonitis.

• HER2 targeting has limited contribution to these T-DXd-induced lung epithelial changes.

• Topoisomerase I inhibitors (e.g. irinotecan) can cause ILD/pneumonitis1. These T-DXd effects on 
lung epithelia are consistent with known topoisomerase I inhibitor adverse effect (e.g. DNA damage, 
cellular senescence) on tumor/normal cells2-4.

Introduction
• T-DXd is a HER2-directed antibody-drug conjugate 

approved for several indications in the US, including 
HER2+ and HER2-low metastatic breast cancer, 
unresectable or metastatic HER2-mutant non-small cell 
lung cancer and locally advanced or metastatic HER2+ 
gastric cancer5. 

• While the safety profile of T-DXd is manageable, 
ILD/pneumonitis is an important identified risk and 
considered as an adverse event of special interest6.

• The therapeutic options for patients that develop 
ILD/pneumonitis are limited to steroid medications, 
including prednisone and methylprednisolone7.

• Hence, a greater understanding of T-DXd-associated 
ILD/pneumonitis pathophysiology has the potential to 
guide alternative interventions to treat or prevent 
ILD/pneumonitis progression and improve patient care.

Methods
• Human bronchial air-liquid interface (ALI) model (internal & Epithelix MucilAir ; 

n=3-6 donors)  and alveolar “lung-on-chip model” microphysiological system (MPS) 
(AlveoliX; n=2 donors) were used in these studies (Fig.1).  

• Bronchial ALI were treated with vehicle controls (DMSO, buffer), T-DXd (5, 50, 100, 
150 µg/ml), payload (deruxtecan; DXd) (100 ng/ml), IgG control antibody-DXd 
conjugate (IgG-DXd) (5, 50, 100, 150 µg/ml), and anti-HER2 antibody (trastuzumab) 
(5, 50, 100, 150 µg/ml). MPS lung-on-a-chip were treated with T-DXd (250 µg/ml) 
and DXd (150 ng/ml) (Fig.1). 

• Gene expression was measured using RNA-seq/Gene Set Enrichment Analysis 
(GSEA), qPCR (Fig.1).

• Protein expression was measured using ELISA (GDF-15, CYFRA21-1), MSD (IL-6), 
Olink targeted proteomics (cytokines/chemokines), western-blot 
(senescence/epithelial-mesenchymal transition [EMT] events) (Fig.1).

• Epithelial barrier integrity was evaluated using barrier function (TEER) and 
cytotoxicity (LDH) (Fig.1). 

Plain language summary
Why did we perform this research? 
• Drug-induced interstitial lung disease is a subset of interstitial lung disease/pneumonitis 

which leads to inflammation and possible scarring in the lung from drugs exposure1.

• The mechanisms/pathways underlying trastuzumab deruxtecan (T-DXd)-related 
ILD/pneumonitis are largely unknown. 

How did we perform this research?
• Transcriptomic and functional studies were performed in human 3D lung models which 

mimics the cellular features of bronchial and alveolar epithelium to assess the potential 
effects of T-DXd on pulmonary epithelial cell homeostasis and function.

• Different treatments were used to evaluate the contribution of HER2 targeting to 
T-DXd-induced lung epithelial changes: T-DXd, payload (deruxtecan; DXd), IgG control 
antibody-DXd conjugate (IgG-DXd), and anti-HER2 antibody (trastuzumab). 

What were the findings of this research? 
• T-DXd was shown to activate the p53 pathway, induce epithelial injury and upregulate 

pro-senescence, pro-inflammatory and pro-fibrotic mediators in in-vitro lung models.

• Similar effects on lung cells were seen with DXd and IgG-DXd, but trastuzumab did not 
have any effect.

What are the implications of this research? 
• A greater understanding of T-DXd-associated ILD/pneumonitis pathophysiology has the 

potential to guide alternative interventions to treat or prevent ILD/pneumonitis 
progression and improve patient care.

Where can I access more information?
• Incidence of adjudicated drug-related ILD/pneumonitis in a pooled analysis of nine 

T-DXd monotherapy studies2.
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Results and interpretation

Fig 2. T-DXd dysregulates genes and 
pathways associated with lung fibrosis in 
ALI model 
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Fig 4. T-DXd promotes epithelial barrier 
dysfunction and cell damage in ALI model
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• Transcriptome and GSEA of bronchial ALI revealed that 
genes and pathways associated with senescence, 
inflammation, and barrier integrity were dysregulated 
upon treatment with T-DXd (Fig.2). 

• Transcriptomic findings linked to senescence and 
inflammation were confirmed in follow-up ALI 
experiments where T-DXd was shown to induce DNA 
damage (γH2AX), activation of p53 pathway (p-p53) 
(Fig. 3a) and upregulate senescence-associated 
secretory phenotype (SASP) secretion (GDF-15, IL-6) 
(Fig. 3b), pro-inflammatory (e.g. TNF, IL17C) and 
pro-fibrotic (e.g. CCL3, CCL4) mediators (Fig. 5).

• T-DXd induced epithelial injury of ALI cells, which was 
reflected by loss of barrier function (TEER), increased 
cytotoxicity (LDH) and release of epithelial damage 
markers (CYFRA21-1) (Fig. 4a). 

• These changes were also accompanied by 
upregulation of mesenchymal cell markers (vimentin, 
α-SMA), suggesting cells transition to a partial EMT 
phenotype (Fig. 4b). 

• T-DXd activated senescence- and inflammation-
associated markers (e.g. GDF-15, CCL3, OSM, TNF) in 
alveolar lung-on-chip model, thus indicating that T-DXd 
has similar effects in alveoli epithelia (Fig. 6).

• Overall, there results suggest DXd showed similar 
profile with T-DXd but with stronger effects on ALI (Fig. 
3-5).

• T-DXd and IgG-DXd have similar dose-dependent 
effects on ALI whereas trastuzumab did not have any 
effect, suggesting limited contribution of HER2 
targeting to T-DXd-induced lung epithelial changes in 
the experimental models used (Fig. 3-6).

Fig 3. T-DXd promotes cellular senescence and SASP secretion in ALI model

Fig. 2 RNA-Seq was performed after 2 days of treatment with buffer or T-DXd (250 µg/ml) in ALI cells (n=3 
donors). Network plot of enriched terms (qvalue < 0.05) from GSEA are shown. Node size indicates the number 
of significantly dysregulated genes in each pathway and node color indicates the significance of the pathway.  
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Fig. 3a Whole-cell extracts were analyzed using western blot with γH2AX (Day 
2), p-p53 (Ser15) (Day 2) or p21 (Day 7) antibodies. ALI cells were incubated 
with either DMSO, DXd (100 ng/ml), JNJ (10 µg/ml), buffer, T-DXd (150 µg/ml), 
IgG-DXd (150 µg/ml) or trastuzumab (150 µg/ml) (n=3-6 donors). JNJ 
(JNJ26854165) is an inhibitor of MDM2 binding to p53. P values: P < 0.05 (*), 
P < 0.01 (**), P < 0.001(***).

Fig. 3b Media GDF15 and mucus IL-6 levels were measured in ALI cells treated with either DMSO, 
DXd (100 ng/ml), JNJ (10 µg/ml), T-DXd (5, 50, 100, 150 µg/ml), IgG-DXd (5, 50, 100, 150 µg/ml) or 
trastuzumab (5, 50, 100, 150 µg/ml) for 7 days (n=3-6 donors). P values: P < 0.05 (*), P < 0.01 (**), 
P < 0.001(***).

Fig 5. T-DXd induces production of pro-inflammatory and 
pro-fibrotic mediators in ALI model

Fig 6. T-DXd promotes epithelial changes, senescence and inflammation in MPS alveolar 
lung-on-a chip model
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Fig. 4a TEER measurement, LDH and media CYFRA21-1 levels were measured in ALI cells treated with 
either DMSO, DXd (100 ng/ml), T-DXd (5, 50, 100, 150 µg/ml), IgG-DXd (5, 50, 100, 150 µg/ml) or 
trastuzumab (5, 50, 100, 150 µg/ml) for 7 days (n=3-6 donors). 4b Whole-cell extracts were analyzed by 
western blot with antibodies after ALI cells were incubated with either DMSO, DXd (100 ng/ml), buffer, 
T-DXd (150 µg/ml), IgG-DXd (150 µg/ml) or trastuzumab (150 µg/ml) for 7 days (n=3 donors). P values: 
P < 0.05 (*), P < 0.01 (**), P < 0.001(***).

Fig. 5 Targeted proteomics analysis was preformed in mucus samples after ALI cells were incubated with either DMSO, DXd (100 ng/ml), buffer, 
T-DXd (150 µg/ml), IgG-DXd (150 µg/ml) or trastuzumab (150 µg/ml) for 7 days (n=3 donors). Heatmap of significant proteins (p < 0.05) are 
shown and Log2-transformed average protein fold changes (FC) are normalized to vehicle controls. Pearson's correlation profile of proteins 
significantly regulated by both T-DXd and IgG-DXd treatments (p < 0.1). Volcano plots of significant proteins (p < 0.05) are shown and annotated 
with their names.

Fig 6a. TEER measurement, LDH were measured in MPS alveolar lung-on-a chip treated with either DMSO, DXd (150 ng/ml), buffer or T-DXd (250 µg/ml) for 3 days (n=2 donors). 6b Gene expression was analyzed using qPCR 
and normalized to vehicle controls after treatment with DXd (30 ng/ml) or T-DXd (250 µg/ml) for 4 days (n=2 donors). P values: P < 0.05 (*), P < 0.01 (**), P < 0.001(***). 6c Targeted proteomics analysis was preformed in MPS 
alveolar lung-on-a chip after treatment with either DMSO, DXd (150 ng/ml), buffer or T-DXd (250 µg/ml) for 3 days (n=2 donors). Heatmap of significant proteins (p < 0.05) are shown and Log2-transformed average protein fold 
changes (FC) are normalized to vehicle controls. Volcano plots of significant proteins (p < 0.05) are shown and annotated with their names.
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Future direction 
Ongoing studies aim to:

• Evaluate the clinical translation of these in vitro mechanistic findings about T-DXd-associated ILD/pneumonitis.

• Develop roadmap to improve patient treatment management, care and outcome. 
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Fig 1. Schematic experimental design of human lung modeling studies
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