

In vivo efficacy of B7-H3 (CD276)-directed antibody-drug conjugate (ADC) ifinatamab deruxtecan (I-DXd; DS-7300a): an update from the Pediatric Preclinical In Vivo Testing (PIVOT) Program

<u>Richard Gorlick¹, Jonathan Gill¹, Wendong Zhang¹, Peter J Houghton², Raushan Kurmasheva², Yael P Mossé³, John M Maris³, David Groff³, Jun Hasegawa⁴,</u> Xiaozhong Qian⁴, Steve Neuhauser⁵, Tim Stearns⁵, Emily L. Jocoy⁵, Jeff Chuang⁵, Carol J Bult⁵, Beverly Teicher⁶, Malcolm A. Smith⁶ ¹MD Anderson Cancer Center, ²University of Texas Health Sciences Center, San Antonio; Greehey Children's Hospital of Philadelphia, ⁴Daiichi Sankyo, Inc., ⁵The Jackson Laboratory, ⁶National Cancer Institute

https://preclinicalpivot.org

ABSTRACT

I-DXd is a B7-H3-directed ADC with a topoisomerase 1 inhibitor payload (an exatecan derivative, DXd). I-DXd has demonstrated clinical efficacy in adults with heavily pretreated solid tumors (Patel et al., ESMO 2023) and is in clinical testing for adults with small cell lung cancer (NCT05280470 and NCT06203210). We previously reported that I-DXd induced objective responses in PDX models for multiple B7-H3 (CD276) expressing pediatric histologies, including rhabdomyosarcoma, osteosarcoma, neuroblastoma, and Wilms tumor. We extend these results with dose-response testing and include an isotype control ADC (IC-ADC) to evaluate whether B7-H3 expression is required for optimal response.

PDX models were dosed with vehicle, I-DXd, or IC-ADC, the latter two at 1, 3, and 10 mg/kg intravenously on days 1 and 15. Testing was performed using 5 animals per treatment group. Activity was assessed by the PIVOT objective response measure (ORM) (Ped Blood Cancer 2007;49:928-940) that defines objective response as partial, complete, or maintained complete response (PR, CR, and MCR) compared to stable disease (SD) or progressive disease, with or without growth delay (PD2 and PD1, respectively).

To evaluate treatment efficacy for osteosarcoma, neuroblastoma, rhabdomyosarcoma, Ewing sarcoma and Wilms (kidney) tumor, objective response measures (ORM) based on changes in relative tumor volume (RTV) were used (Houghton, Pediatric Blood Cancer 2007;49:928-940).

To calculate event free survival for these models a relative tumor volume greater than or equal to 4 was used as the event. For orthotopic CNS models, survival was the study endpoint. A statistical comparison of survival days was computed using two approaches: Gehan-Wilcoxon and exact rank tests. The Gehan-Wilcoxon test gives more weight to deaths at earlier time points and is most sensitive to early differences between survival. The null hypothesis of no differences between the curves is rejected at a p-value threshold of < 0.05.

ORM	ORM Code	Criteria				
		< 50% tumor regression throughout				
Progressive Disease	PD	study				
		> 25% tumor growth at end of study				
		<u>PD</u>				
Progressive Disease 1	PD1	the mouse's <u>time-to-event ≤ 200%</u>				
FIOGLESSIVE DISEASE I		the median time-to-event in control				
		<u>group</u>				
Progressive Disease 2		PD				
	PD2	the mouse's time-to-event is > 200%				
		the median time-to-event in control				
		group				
	SD	< 50% tumor regression throughout				
Stable Disease		study				
		≤ 25% tumor growth at end of				
		study				
		≥ 50% tumor regression at any point				
Partial Response	PR	during study but measurable tumor				
		throughout study period				
Complete Response	CR	disappearance of measurable tumor				
· ·		mass during the study period				
		no measurable tumor mass for at				
Maintained Complete Response	MCR	least 3 consecutive weekly readings				
		at any time after treatment has been				
		completed				

mouse was ned a score from 0 based on their ORM. = 0, PD2 = 2, SD = 4,6, CR = 8, and MCRand the median for roup determines the Il response.

median score was vay between an number category, pjective response is ned to the lower nse category.

Log cell kill (LCK) per dose (Clark, 1997) was estimated from: LCK/dose =(T-C)/(3.32)(T_D)(n), where T_D = tumor doubling time and n = number of treatments. The equation simplifies to LCK/dose = 0.301 x [T/C -1]

Model	IHC B7-H3 H-Score	Diagnosis	I-DXd (DS-7300a)						Isotype Control (IC-ADC)						
			1 mg/kg 3 mg/kg		10 n	ng/kg	1 mg/kg		3 mg/kg		10 mg/kg				
OS-9	230	Osteosarcoma	PD2 0.	.63	PR	3.34	MCR	>3.34	PD1	0.03	PD1	0.06	PD1	0.03	
OS-33	240	Osteosarcoma	PD2 1.	.53	MCR	>2.14	MCR	>2.14	PD1	0.04	PD2	0.81	SD	>2.14	
Felix	210	Neuroblastoma	PD2 1.	.48	MCR	8.17	MCR	>11.46	PD1	-0.21	PD1	-0.18	PD2	3.03	
COG-N-452X	212	Neuroblastoma	PD1 0.	.13	PD1	0.54	MCR	>2.36	PD1	-0.08	PD1	0.08	PD1	0.53	
Rh30	140	Rhabdomyosarcoma	PD2 0.	.64	MCR	2.89	MCR	>3.3	PD1	0.06	PR	1.05	MCR	2.05	
WT11	150	Wilms tumor	PD1 0.	.0	PD2	0.33	MCR	>3.2	PD1	-0.07	PD1	-0.02	PD2	1.18	

SevenBridges

Nn & Robert H. Lurie Children's Hospital of Chicago[®]

	DISCUSSION
	I-DXd showed dose-dependent activity with maintained complete responses (MCR) for all preclinical models at 10 mg/kg.
	Partial response (PR) or MCR were observed in 4 of 6 models to I-DXd at 3 mg/kg, with no objective responses to I-DXd at 1 mg/kg.
	Activity was lower for IC-ADC compared to I-DXd for all models at all doses tested. Only the rhabdomyosarcoma model showed objective response to IC-ADC.
	Multiple log cell kill was observed with two 10 mg/kg I-DXd doses, and tumor regrowth was not observed at 80-100 days following treatment initiation.
	CONCLUSIONS
	We confirm significant anti-tumor activity for I-DXd in preclinical models of multiple pediatric solid tumors with B7-H3 expression.
	Study results provide evidence of a dose response effect for I-DXd and for enhanced efficacy for I-DXd versus IC-ADC.
	Testing in additional preclinical models of glioblastoma is underway.
	Due to the high expression of B7-H3 in multiple
	is a high priority for clinical evaluation for
	multiple B7-H3 expressing pediatric solid tumors.
	REFERENCES
	Clark, Breast Cancer Research and Treatment 1997; 46:255-278 Houghton, Pediatric Blood Cancer 2007; 49:928-940 Johnson, Annals of Oncology 2021; 32:S583-S585 Patel, J Clinical Oncology 2022; 40:87
	MORE INFORMATION
	Corresponding author: Richard Gorlick, MD, MD Anderson Cancer Center Presented at: AACR Annual Meeting, 2024 (San Diego) Funding: 3U01CA199221, 3U01CA199287, 3U01CA199297, 3U01CA199288, U24CA263963
l Ne	et Log Cell Kill in Preclinical Models
	Isotype Control (IC-ADC)

