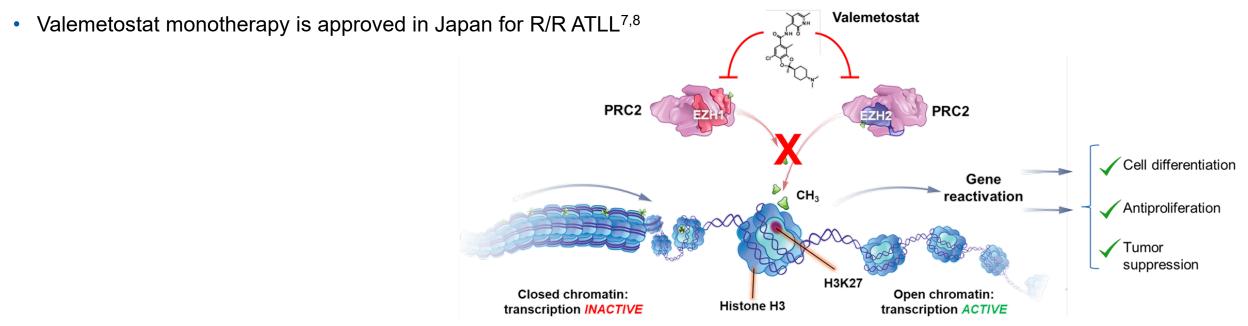
Valemetostat for Relapsed or Refractory Peripheral T-Cell Lymphomas: Primary Results from a Phase 1 Trial


Eric Jacobsen, MD,¹ Dai Maruyama, MD, PhD,² Pierluigi Porcu, MD,³ Kensei Tobinai, MD, PhD,² Pamela B. Allen, MD,⁴ Kenji Ishitsuka, MD, PhD,⁵ Kunihiro Tsukasaki, MD, PhD,⁶ Shigeru Kusumoto, MD, PhD,⁷ Francine Foss, MD,⁸ Nobuhiko Yamauchi, MD,⁹ Satoko Morishima, MD, PhD,¹⁰ Yoshitaka Imaizumi, MD, PhD,^{11,12} Koji Izutsu, MD, PhD,² Tatyana Feldman, MD,¹³ Toyotaka Kawamata, MD, PhD,^{14,15} Yasuyuki Kakurai, PhD,¹⁶ Hideyuki Yamauchi, MSc,¹⁶ Noha Biserna, MSc,¹⁷ Ai Inoue, MD, PhD,¹⁷ Shinji Tsutsumi, PhD,¹⁷ Steven M. Horwitz, MD¹⁸

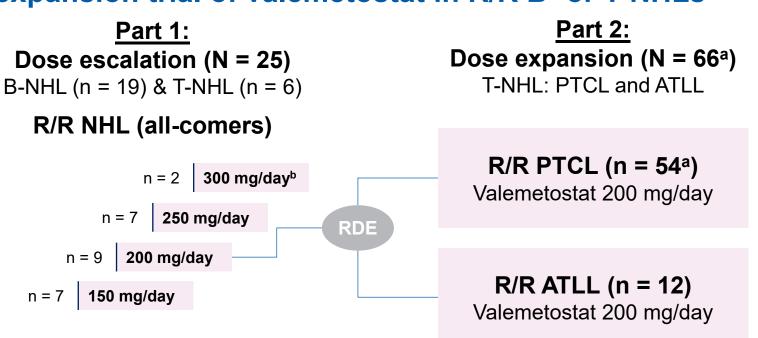
¹Dana-Farber Cancer Institute, Boston, MA, USA; ²National Cancer Center Hospital, Tokyo, Japan; ³Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA; ⁴Emory University, Atlanta, GA, USA; ⁵Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima, Japan; ⁶Department of Hematology, Saitama Medical University International Medical Center, Saitama, Japan; ⁷Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; ⁸Yale University School of Medicine, New Haven, CT, USA; ⁹National Cancer Center Hospital East, Chiba, Japan; ¹⁰University of the Ryukyus Hospital, Okinawa, Japan; ¹¹Department of Hematology, National Hospital Organization Nagasaki Medical Center, Nagasaki, Japan; ¹²Nagasaki University Hospital, Nagasaki, Japan; ¹³John Theurer Cancer Center at Hackensack Meridian Health School of Medicine, Hackensack, NJ, USA; ¹⁴Department of Hematology/Oncology, The Institute of Medical Science, University of Tokyo, Tokyo, Japan; ¹⁵Department of Hematology, Tokyo Metropolitan Bokutoh Hospital, Tokyo, Japan; ¹⁶Daiichi Sankyo Co., Ltd., Tokyo, Japan; ¹⁷Daiichi Sankyo Inc., Basking Ridge, NJ, USA; ¹⁸Memorial Sloan Kettering Cancer Center, New York, NY, USA

Abstract #303

Valemetostat

- Treatment options are limited and prognosis is often poor for patients with R/R T-NHLs, including PTCL and ATLL
- EZH2 and EZH1 catalyze the trimethylation of histone H3 at lysine 27 (H3K27me3), leading to transcriptional repression^{1,2}
- Valemetostat tosylate (valemetostat) is a novel, potent, and selective dual inhibitor of EZH2 and EZH1 that suppresses aberrant H3K27me3, thereby promoting antitumorigenic processes²⁻⁴
 - Valemetostat shows broad-spectrum antitumor activity in preclinical models of NHL^{3,5,6}

ATLL, adult T-cell leukemia/lymphoma; EZH, enhancer of zeste homolog; H3K27me3, tri-methylation of lysine 27 on histone H3 protein; PRC2, polycomb repressive complex 2; PTCL, peripheral T-cell lymphoma; R/R, relapsed or refractory; T-NHL, T-cell non-Hodgkin lymphoma.

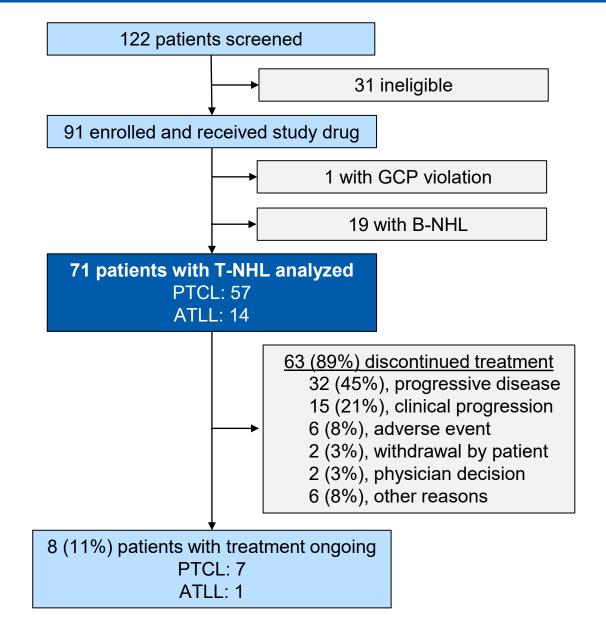

1. Herviou L, et al. Oncotarget 2016;7:2284–2296. 2. Nakagawa M, Kitabayashi I. Cancer Sci 2018;109:2342–2348. 3. Yamagishi M, et al. Cell Rep 2019;29:2321–2337e7. 4. Fujikawa D, et al. Blood 2016;127:1790– 1802. 5. Hama Y, et al. Blood 2019;134(Suppl 1):4642. 6. Honma D, et al. Cancer Sci 2017;108:2069–2078. 7. Izutsu K, et al. Blood 2023;141:1159–1168. 8. EZHARMIA[®] (valemetostat tosilate). [package insert]. Tokyo, Japan: Daiichi Sankyo; 2022.

Study design

DS3201-A-J101 ("J101"; NCT02732275): Multicenter, single-arm, phase 1 dose-escalation and expansion trial of valemetostat in R/R B- or T-NHLs

Key inclusion criteria

- T- or B-cell NHL
- R/R to \geq 1 prior line of therapy
- Age ≥ 20 (Japan) or ≥ 18 (US) y
- ECOG PS score 0 or 1


Primary endpoints: Safety (including DLTs, TEAEs), RP2D, PK parameters **Secondary endpoints:** MTD, efficacy

^a Number includes 1 patient excluded from all analyses due to a GCP violation.

^b 2 of 2 patients in the 300 mg/day cohort experienced DLTs: 1 patient had grade 3 anemia requiring transfusion and grade 4 platelet count decreased, and another patient had grade 4 platelet count decreased. B-NHL, B-cell non-Hodgkin lymphoma; DLT, dose-limiting toxicity; ECOG, Eastern Cooperative Oncology Group; GCP, good clinical practice; MTD, maximum tolerated dose; PK, pharmacokinetic; PO, by mouth; PS, performance status; QD, once daily; RDE, recommended dose for expansion; RP2D, recommended phase 2 dose; TEAE, treatment-emergent adverse event; y, years.

J101 T-NHL cohort: Enrollment and disposition

- Patients were enrolled from April 2016 through June 2021
- Data from 71 patients from the J101 trial with T-NHLs were analyzed
 - The trial included 57 patients with PTCL and 14 patients with ATLL
 - Patients with T-NHLs received doses of 150 mg/day or 200 mg/day
 - PTCL: 150 mg/day, n = 2; 200 mg/day, n = 55
 - ATLL: 150 mg/day, n = 2; 200 mg/day, n = 12
- Median treatment duration at data cutoff (Dec 31, 2022) was 3.7 months (range, 0.03–44.4)

Baseline demographic and disease characteristics

Characteristic	Total (n = 71)	PTCL (n = 57)	ATLL (n = 14)	Characteristic	Characteristic Total (n = 71)	Characteristic
Age, years, median (range)	68 (26–83)	68 (26–83)	66.5 (37–78)	T-NHL type, n (%)	T-NHL type, n (%)	T-NHL type, n (%)
Sex, n (%)				PTCL	PTCL 57 (80)	PTCL 57 (80) 57 (100)
Male	43 (61)	35 (61)	8 (57)	ALCL ^b	ALCL ^b 2 (3)	ALCL ^b 2 (3) 2 (4)
Female	28 (39)	22 (39)	6 (43)	AITL	AITL 23 (32)	AITL 23 (32) 23 (40)
Country of enrollment, n (%)				PTCL, NOS	PTCL, NOS 26 (37)	PTCL, NOS 26 (37) 26 (46)
Japan	27 (38)	18 (32)	9 (64)	Other T-cell lymphoma ^c	Other T-cell lymphoma ^c 6 (8)	Other T-cell lymphoma ^c 6 (8) 6 (11)
US	44 (62)	39 (68)	5 (36)	ATLL	ATLL 14 (20)	ATLL 14 (20) 0
ECOG PS score, n (%)				Acute	Acute 7 (10)	Acute 7 (10) 0
0	29 (41)	21 (37)	8 (57)	Lymphomatous	Lymphomatous 7 (10)	Lymphomatous 7 (10) 0
1	41 (58)	36 (63)	5 (36)	Prior lines of therapy,	Prior lines of therapy,	Prior lines of therapy,
≥2	1 (1) ^a	0	1 (7) ^a	median (range)	median (range) 2 (1–8)	
				Prior HCT, n (%)	Prior HCT, n (%) 18 (25)	Prior HCT, n (%) 18 (25) 16 (28)
				Allogeneic	Allogeneic 4 (6)	Allogeneic 4 (6) 2 (4)

Data cutoff: December 31, 2022.

^a One patient had an eligible ECOG PS score (≤ 2) at the time of screening, but then had a score of 4 at baseline.

^b Includes 1 patient with ALK⁻ ALCL and 1 patient whose ALK status was unknown.

^c Includes patients with SPTCL; (n = 2), ENKTCL (nasal type; n = 1), hepatosplenic T-cell lymphoma (n = 1), nodal PTCL with TFH phenotype (n = 1), and primary cutaneous gamma-delta T-cell lymphoma (n = 1). AITL, angioimmunoblastic T-cell lymphoma; ALCL, anaplastic large-cell lymphoma; ALK, anaplastic lymphoma kinase; ENKTCL, extranodal NK/T-cell lymphoma HCT, hematopoietic cell transplantation; NK, natural killer; NOS, not otherwise specified; SPTCL, subcutaneous panniculitis-like T-cell lymphoma; TFH, T follicular helper.

Autologous

0

14 (20)

14 (25)

	PTCL	PTCL s	ATLL ^c		
Response	(n = 55 ^{a,b})	AITL (n = 22)	PTCL, NOS (n = 26)	(n = 14)	
Best overall response, n (%)					
CRd	17 (31)	10 (45)	7 (27)	4 (29)	
PR	13 (24)	4 (18)	6 (23)	5 (36)	
SD	4 (7)	1 (5)	3 (12)	1 (7)	
PD	15 (27)	5 (23)	8 (31)	3 (21)	
NE	1 (2)	1 (5)	0	0	
ND	5 (9)	1 (5)	2 (8)	1 (7)	
ORR, ^e % (n/N)	55 (30/55)	64 (14/22)	50 (13/26)	64 (9/14)	
[95% CI] ^f	[40.6, 68.0]	[40.7, 82.8]	[29.9, 70.1]	[35.1, 87.2]	

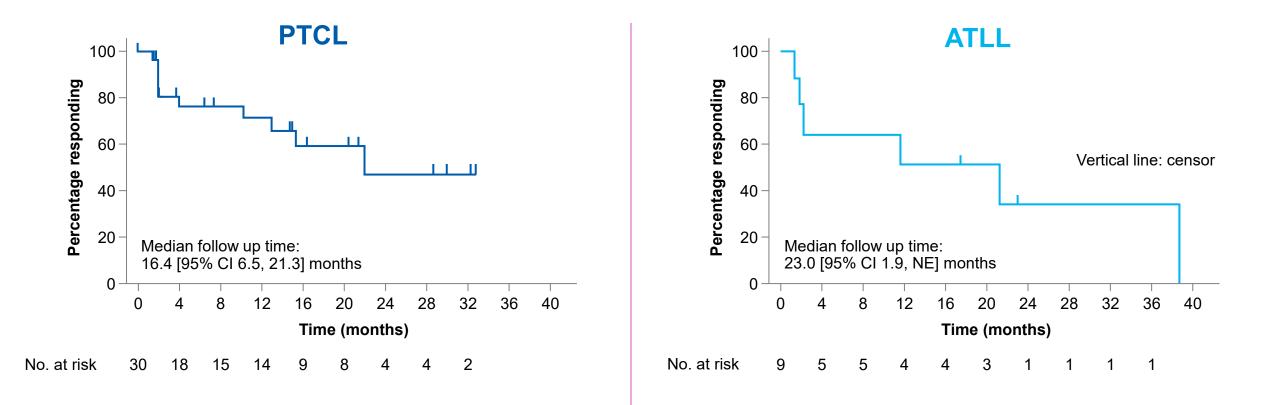
Data cutoff: December 31, 2022.

^a 2 patients without measurable disease at baseline were excluded from response analyses.

^b Includes patients who received 150 mg/day (n = 2) and 200 mg/day (n = 53).

^c Includes patients who received 150 mg/day (n = 2) and 200 mg/day (n = 12).

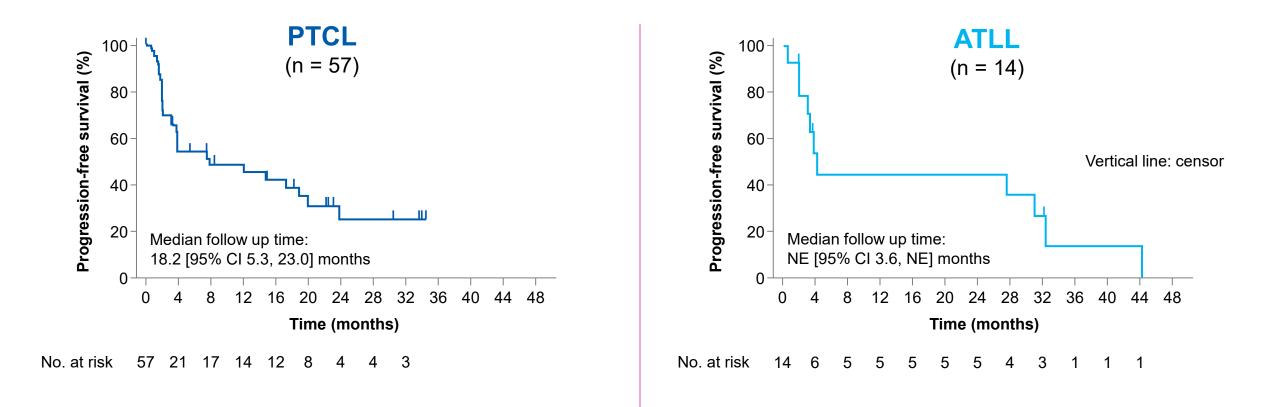
^d CR includes CRu for ATLL.


^e Clinical response defined per 2007 International Working Group response criteria for PTCL or modified ATLL 2009 response criteria; ORR was the proportion of patients achieving CR or PR.

^f 95% CI based on the Clopper–Pearson method.

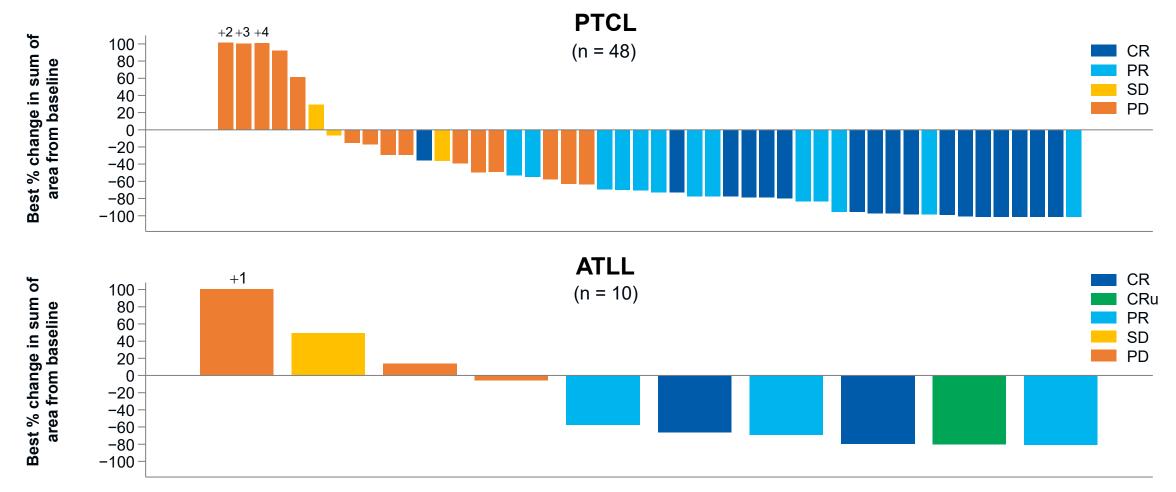
CI, confidence interval; CR, complete response; CRu, uncertified CR; ND, not done; NE, not evaluable; ORR, overall response rate; PD, progressive disease; PR, partial response; SD, stable disease.

Duration of response

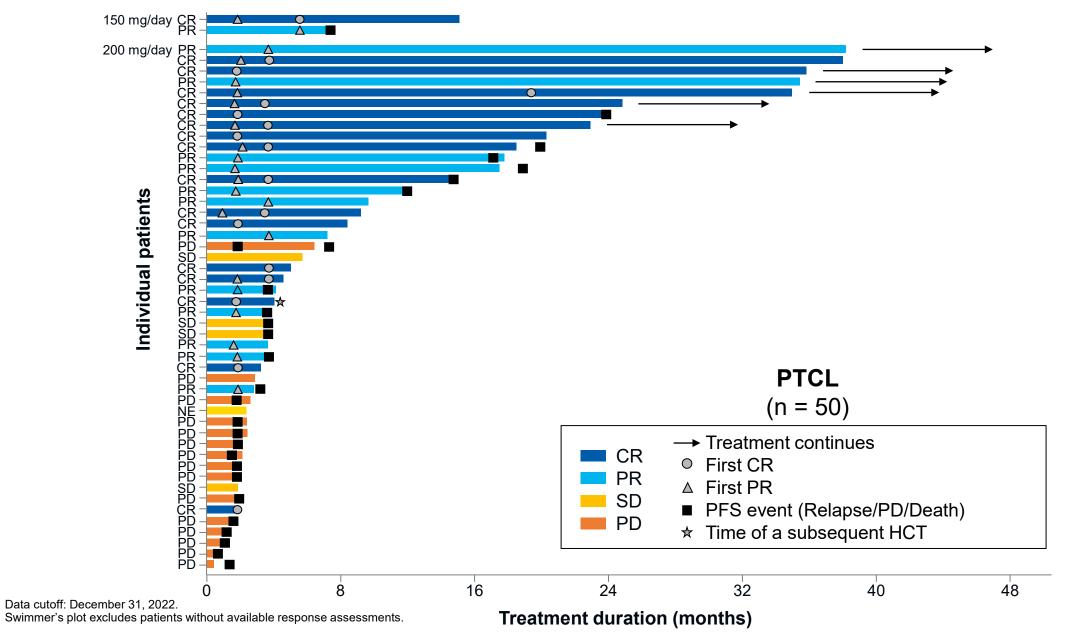

- Median DOR was 21.9 [95% CI 10.2, NE] months for PTCL and was 21.2 [1.4, 38.7] months for ATLL
- Median times to response were 1.8 (range, 1.0–5.6) and 1.9 (1.7–19.4) months, respectively

Data cutoff: Dec 31, 2022. Median follow-up for each cohort was estimated using the reverse-Kaplan-Meier method. DOR, duration of response; NE, not estimable.

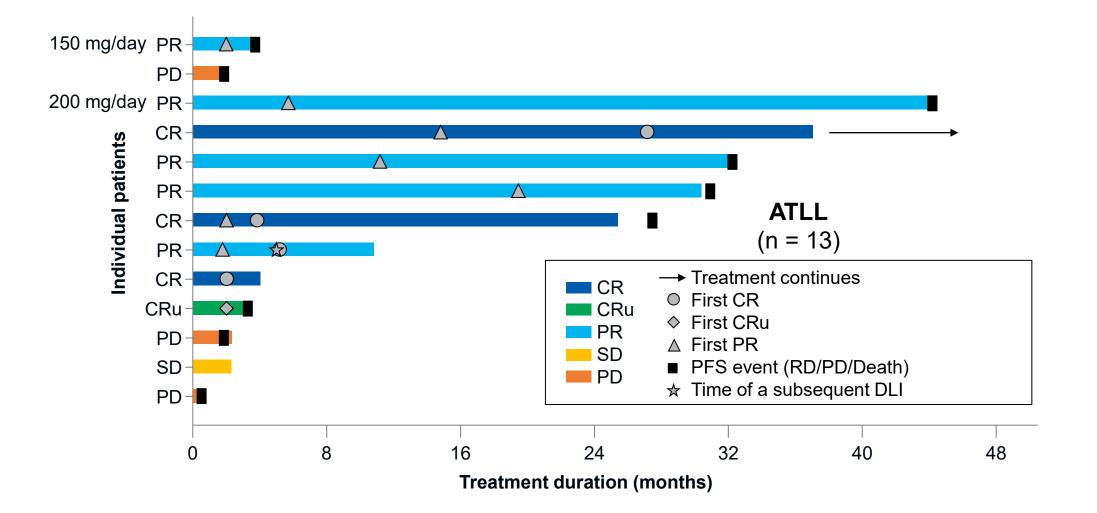
Progression-free survival


• Median PFS for PTCL and ATLL was 7.7 [95% CI 3.6, 19.8] and 4.1 [1.9, 32.2] months, respectively

Data cutoff: Dec 31, 2022. PFS, progression-free survival.


Change in target lesions from baseline

32 (67%) patients with PTCL and 6 (60%) patients with ATLL experienced a maximum reduction of > 50% from baseline in measurable target lesions


Data cutoff: Dec 31, 2022. Analysis includes all patients with measurable lesions at baseline and at least 1 valid post-baseline assessment.

Exposure duration and clinical responses

Jacobsen E, et al. ASH 2023 #303

Exposure duration and clinical responses

TEAE/TRAE summary, n (%)	PTCL (N = 57ª)	ATLL (N = 14 ^b)	TEAE/TRAE summary n (%)		ATLL (N = 14 ^b)
TEAEs	57 (100)	14 (100)	TEAEs leading to death	0	0
TRAEs	47 (82)	12 (86)	TRAEs leading to death	0	0
	(0-)	(00)	TEAEs leading to discontinuation	6 (11)	0
Grade ≥ 3 TEAEs	39 (68)	12 (86)	TRAEs leading to discontinuation	4 (7)	0
Grade ≥ 3 TRAEs	23 (40)	8 (57)	TEAEs leading to dose reduction	4 (7)	1 (7)
Serious TEAEs	29 (51)	7 (50)	TRAEs leading to dose reduction	4 (7)	1 (7)
Serious TRAEs	8 (14)	2 (14)	TEAEs leading to dose interruption	30 (53)	4 (29)
			TRAEs leading to dose interruption	15 (26)	3 (21)

Data cutoff: December 31, 2022. ^a Includes patients who received 150 mg/day (n = 2) and 200 mg/day (n = 55). ^b Includes patients who received 150 mg/day (n = 2) and 200 mg/day (n = 12). TRAE, treatment-related treatment-emergent adverse event.

TRAEs leading to dose modifications

- Dose interruption in ≥ 2 patients: CMV infection (3 patients), dysgeusia (3), platelet count decreased (3), pneumonitis (2), neutrophil count decreased (2)
- Dose reduction: platelet count decreased (2 patients), anemia (1), colitis (1), diarrhea (1)
- Treatment discontinuation in PTCL: AML (1 patient), MDS (1), colitis (1), acute kidney injury (1)
 - One patient in the B-NHL cohort receiving valemetostat 150 mg/day had *Pneumocystis jirovecii* pneumonia that led to treatment discontinuation

Most common TEAEs in patients with T-NHL

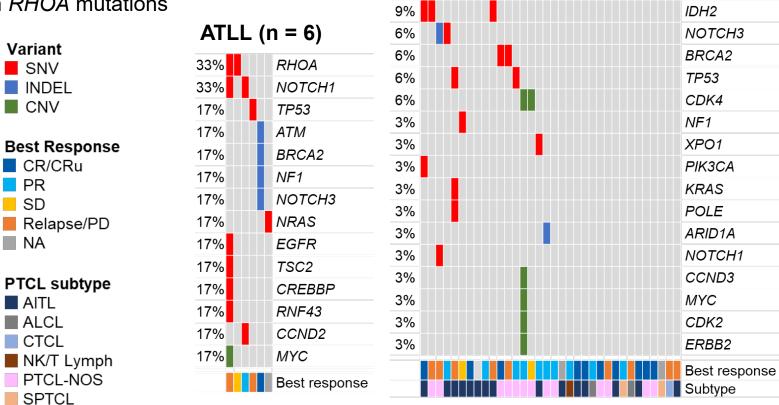
• Cytopenias were frequent; the most common TEAE was platelet count decreased

•	TEAEs				TRAEs			
	PTCL (N = 57ª)		ATLL (N = 14 ^b)		PTCL (N = 57ª)		ATLL (N = 14 ^b)	
Preferred term, n (%)	All grades	Grade ≥ 3	All grades	Grade ≥ 3	All grades	Grade ≥ 3	All grades	Grade ≥ 3
Platelet count decreased ^c	32 (56)	13 (23)	9 (64)	4 (29)	25 (44)	7 (12)	8 (57)	3 (21)
Dysgeusia	25 (44)	0	8 (57)	0	24 (42)	0	8 (57)	0
Anemia ^d	23 (40)	10 (18)	5 (36)	2 (14)	14 (25)	3 (5)	4 (29)	1 (7)
Neutrophil count decreased ^e	16 (28)	11 (19)	7 (50)	6 (43)	12 (21)	7 (12)	6 (43)	5 (36)
Alopecia	16 (28)	0	6 (43)	0	15 (26)	0	6 (43)	0
Diarrhea	16 (28)	1 (2)	3 (21)	0	15 (26)	1 (2)	1 (7)	0
WBC count decreased ^f	14 (25)	7 (12)	4 (29)	3 (21)	11 (19)	4 (7)	4 (29)	3 (21)
Nausea	15 (26)	0	3 (21)	0	12 (21)	0	3 (21)	0
Fatigue ^g	13 (23)	3 (5)	3 (21)	0	8 (14)	3 (5)	1 (7)	0

Data cutoff: December 31, 2022.

^a Includes patients who received 150 mg/day (n = 2) and 200 mg/day (n = 55). ^b Includes patients who received 150 mg/day (n = 2) and 200 mg/day (n = 12).

^c Platelet count decreased includes MedDRA preferred terms Thrombocytopenia and Platelet count decreased.


^d Anemia includes Anemia, Hemoglobin decreased, and Red blood cell count decreased. ^e Neutrophil count decreased includes Neutropenia and Neutrophil count decreased.

^f WBC count decreased includes Leukopenia and White blood cell count decreased. ^g Fatigue includes Asthenia and Fatigue.

MedRA, Medical Dictionary for Regulatory Activities; WBC, white blood cell.

Gene mutations at baseline

- Mutational analyses were performed using the Oncomine[™] Comprehensive Assay (v3) covering 161 cancer genes
- The most frequently mutated gene was *RHOA*, which was detected in 11 of 40 patients
 - 9 of 34 patients with PTCL (AITL: n = 7; PTCL, NOS: n = 2)
 - 2 of 6 patients with ATLL
- No significant differences detected in clinical response among patients with *RHOA* mutations

26%

PTCL (n = 34)

RHOA

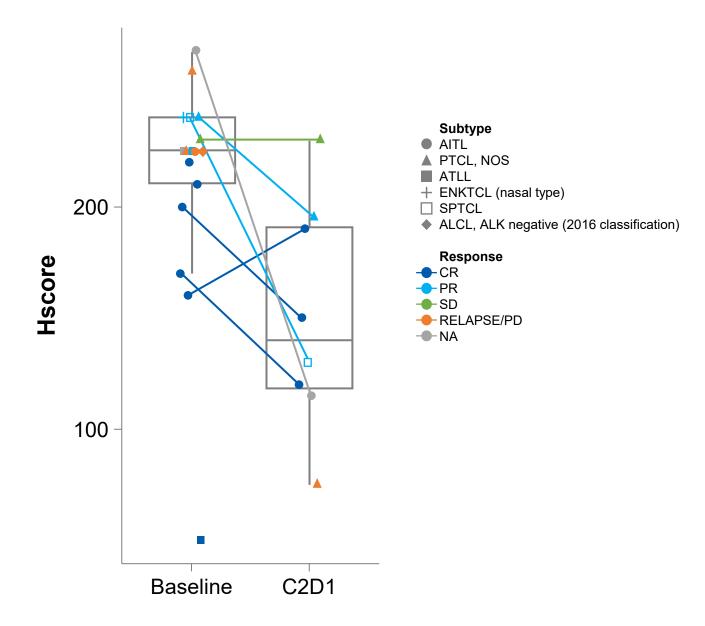
Data cutoff: Dec 31, 2022.

CNV, copy number variation; CTCL, cutaneous T-cell lymphoma; INDEL, insertion-deletion; RHOA, ras homolog family member A; SNV, single nucleotide variant.

- These results indicate that valemetostat monotherapy showed encouraging efficacy in R/R PTCL and R/R ATLL
 - Valemetostat monotherapy induced durable responses, with median DOR of > 21 months in both R/R PTCL and R/R ATLL
- TEAEs were generally manageable in R/R PTCL and R/R ATLL
- Results for patients in this trial with R/R B-NHLs are described in an abstract by Izutsu et al (abstract #1731) at this congress
- Ongoing trials of valemetostat in patients with R/R PTCLs include the phase 2 monotherapy VALENTINE-PTCL01 trial (NCT04703192; Horwitz et al #302)

- The authors thank the patients, families, and caregivers for their participation, and the study staff for their contributions
- This study is sponsored by Daiichi Sankyo Co., Ltd
- Editorial support was provided by Korin Albert, PhD, of Excerpta Medica, funded by Daiichi Sankyo Co., Ltd, and in accordance with Good Publication Practice (GPP) guidelines

- The authors thank the following investigators for contributing to the enrolment of patients and study design:^a
 - Jonathan Brammer
 - Kisato Nosaka
 - Jia Ruan
 - Atae Usunomiya
 - Jie Wang
 - Jasmine Zain



Copies of this presentation obtained through Quick Response (QR) Code or https://bit.ly/DSIASH2023 are for personal use only and may not be reproduced without permission from the author of this material.

Backup slides

H3K27me3 levels during valemetostat treatment

 In most patients, H3K27me3 levels in tumor cells likely decreased on C2D1 compared with baseline

Data cutoff: December 31, 2022. ^a Valemetostat was administered in continuous 28-day cycles. C2D1, Cycle 2 Day 1.