Efficacy and Safety of Valemetostat Monotherapy in Patients With Relapsed or Refractory Peripheral T-Cell Lymphomas: Primary Results of the Phase 2 VALENTINE-PTCL01 Study

Steven M. Horwitz, MD¹, Koji Izutsu, MD, PhD², Neha Mehta-Shah, MD³, Raul Córdoba, MD, PhD⁴, Stefan K. Barta, MD, MRCP, MS⁵, Emmanuel Bachy, MD, PhD⁶, Giuseppe Gritti, MD, PhD⁷, Eric Jacobsen, MD⁸, Shigeru Kusumoto, MD, PhD⁹, Yann Guillermin, MD¹⁰, Anca Prica, MD¹¹, Dok Hyun Yoon, MD, PhD¹², Eva Domingo Domenech, MD¹³, Jie Wang, MD, MS¹⁴, Jin Seok Kim, MD, PhD¹⁵, Kate Cwynarski, MBBS, PhD, FRCP, FRCPath¹⁶, Marjolein van der Poel, MD, PhD¹⁷, Ai Inoue, MD, PhD¹⁸, Jin Jin, PhD¹⁸, Sutan Wu, PhD¹⁸, Keiko Nakajima, MD, MSc¹⁸, Pier Luigi Zinzani, MD¹⁹

¹Memorial Sloan Kettering Cancer Center, New York, NY, US; ²National Cancer Center Hospital, Tokyo, Japan; ³School of Medicine, Washington University, St. Louis, MO, US; ⁴Health Research Institute IIS-FJD, Fundación Jiménez Díaz University Hospital, Madrid, Spain; ⁵Perelman Center for Advanced Medicine – University of Pennsylvania, Philadelphia, PA, US; ⁶Lyon-Sud Hospital Center, Pierre-Bénite, France; ⁷ASST Papa Giovanni XXIII, Bergamo, Italy; ⁸Dana-Farber Cancer Institute, Boston, MA, US; ⁹Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; ¹⁰Léon Bérard Center, Lyon, France; ¹¹University Health Network, Toronto, ON, Canada; ¹²Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea; ¹³Institut Catalá d'Oncologia L'Hospitalet, Barcelona, Spain; ¹⁴Duke Cancer Center, Durham, NC, US; ¹⁵Severance Hospital, Yonsei University Health System, Seoul, Korea; ¹⁶University College London Hospital, London, UK; ¹⁷Maastricht University Medical Center, Maastricht, Netherlands; ¹⁸Daiichi Sankyo Inc., Basking Ridge, NJ, US; ¹⁹IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", and Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy

Abstract #302

- PTCLs account for approximately 10% of NHLs in Western countries and approximately 20% of lymphomas in Eastern Asia^{1,2}
- Patients with PTCL often have a poor prognosis, with unfavorable OS and PFS³
- EZH2 overexpression drives the development and progression of many types of cancer, including PTCL⁴
 - EZH2 mutations are rare in PTCL
- Valemetostat tosylate is a novel, potent, and selective dual inhibitor of EZH2 and EZH1
- Valemetostat prevents H3K27me3, thereby increasing the expression of genes silenced by H3K27me3, including genes associated with the regulation of cell proliferation and differentiation⁵
 Valemetostat monotherapy (200 mg/day) is approved
- Valemetostat monotherapy (200 mg/day) is approved in Japan for R/R ATLL^{6,7}

ATLL, adult T-cell leukemia/lymphoma; EZH, enhancer of zeste homolog; H3K27me3, tri-methylation of lysine 27 on histone H3 protein; NHL, non-Hodgkin lymphoma; OS, overall survival; PFS, progression-free survival; PRC2, polycomb repressive complex 2; PTCL, peripheral T-cell lymphoma; R/R, relapsed/refractory.

1. Vose J, et al. J Clin Oncol 2008;26:4124–4130. 2. Ling L, et al. Br J Haematol 2017;178:772–780. 3. Sibon D, et al. Cancers 2022;14:2332. 4. Herviou L, et al. Oncotarget 2016;7:2284–2296. 5. Yamagishi M, et al. Cell Rep 2019;29:2321–2337.e7. 6. EZHARMIA[®] (valemetostat tosilate). [package insert]. Tokyo, Japan: Daiichi Sankyo; 2022. 7. Izutsu K, et al. Blood 2023;141:1159–1168.

Study Design

VALENTINE-PTCL01: global, multicenter, open-label, single-arm, phase 2 trial of valemetostat in R/R PTCLs

- ≥ 18 years
- Confirmed PTCL diagnosis (WHO 2016 classification¹)
- ECOG PS score ≤ 2
- \geq 1 prior line of systemic therapy
 - Patients with ALCL received prior brentuximab vedotin treatment

Primary endpoint: ORR (CT-based BICR assessment; ≥ 10 months follow-up^b)

Key secondary endpoints: DOR, DOCR, CR rate, PR rate, PFS (CT-based BICR assessment and investigator assessment), OS, safety and tolerability

Key exploratory endpoint: PET-CT-based clinical response (BICR)

Lugano 2014 response criteria²

^a PTCL subtypes included AITL, FTL, PTCL-TFH, PTCL-NOS, ALCL (ALK^{+/-}), EATL, MEITL, HSTL, PCGTL, or CD8⁺ PCAECyTCL; subtypes were determined prior to the initiation of study drug according to 2016 WHO classification.

^b Primary analysis was planned at least 10 months after the first dose of the last enrolled patient.

AITL, angioimmunoblastic T-cell lymphoma; ALCL, anaplastic large cell lymphoma; ALK, anaplastic lymphoma kinase; BICR, blinded independent central review; CD, cluster of differentiation; CD8⁺ PCAECTCL, primary cutaneous CD8⁺ aggressive epidermotropic cytotoxic T-cell lymphoma; CR, complete response; CT, computed tomography; DOCR, duration of complete response; DOR, duration of response; EATL, enteropathy-associated T-cell lymphoma; ECOG, Eastern Cooperative Oncology Group; FTL, follicular T-cell lymphoma; HSTL, hepatosplenic T-cell lymphoma; MEITL, monomorphic epitheliotropic intestinal T-cell lymphoma; NOS, not otherwise specified; ORR, objective response rate; PCGTL, primary cutaneous gamma delta T-cell lymphoma; PD, progressive disease; PET, positron emission tomography; PR, partial response; PS, performance status; TCL, T-cell lymphoma; TFH, T follicular helper; WHO, World Health Organization.1. Swerdlow SH, et al. *Blood* 2016;127:2375–2390. *2*. Cheson BD, et al. *J Clin Oncol* 2014;32:3059–3068.

Enrollment and Disposition

- Primary data cutoff occurred 10 months after first dose of the last enrolled patient
- Median (range) valemetostat treatment duration at data cutoff: 18.0 weeks (0.3–93.4)

Data cutoff: May 5, 2023. HCT, hematopoietic cell transplantation.

Baseline Demographics and Disease Characteristics

Characteristic	PTCL (N = 133)
Median age, years (range)	69.0 (22–85)
Sex, n (%)	
Male	91 (68.4)
Female	42 (31.6)
ECOG PS score, n (%)	
0	58 (43.6)
1	65 (48.9)
2	9 (6.8)
3	1 (0.8)
Median prior lines of therapy (range)	2.0 (1–12)
1	36 (27.1)
2	36 (27.1)
3	29 (21.8)
≥ 4	32 (24.1)
Prior HCT, n (%)	35 (26.3)
Autologous	32 (24.1)
Allogeneic	5 (3.8)

PTCL subtypes, n (%) (WHO 2016 classification; central review)	PTCL (N = 133)	
TFH phenotype		
AITL	42 (31.6)	ן
Nodal PTCL with TFH phenotype	8 (6.0)	
FTL	3 (2.3)	
PTCL-NOS	41 (30.8)	
ALCL		Efficacy
ALK ⁺	7 (5.3)	– analysis
ALK-	2 (1.5)	set
MEITL	1 (0.8)	
CD8 ⁺ PCAECTCL	1 (0.8)	
PCGTL	1 (0.8)	
Other TCL ^a	13 (9.8) 🗕	J
Non-TCL or undetermined ^b	6 (4.5)	
Missing ^c	8 (6.0)	

Data cutoff: May 5, 2023.

^a Includes patients with eligible but undetermined subtypes.

^b Includes patients with undetermined eligibility due to the limited sample tumor tissue.

^c Includes patients with either no sample or a sample insufficient for review.

- Ten (8.4%) patients treated with valemetostat proceeded to allo-HCT, including 8 patients (6.7%) with a CR^a and 2 patients with an unknown response
 - The median time from first dose of valemetostat to subsequent allo-HCT was 6.9 months

Data cutoff: May 5, 2023.

^a Responses evaluated by investigator assessment.

allo-HCT, allogeneic HCT; CI, confidence interval; CMR, complete metabolic response; PMR, partial metabolic response.

Duration of Response (CT-Based BICR Assessment)

• Median TTR was 8.1 weeks (range, 5–37) and median DOR was 11.9 months (95% CI, 7.8 months to NE)

Data cutoff: May 5, 2023. NE, not evaluable; TTR, time to response.

Progression-Free Survival and Overall Survival

Data cutoff: May 5, 2023. ^a PFS evaluated by BICR CT-based assessment.

Clinical Response by PTCL Subtype (BICR Assessment)

Responses were observed across all PTCL subtypes

Data cutoff: May 5, 2023.

^a Other TCLs include 3 patients with FTL, 1 with PCGTL, 1 with CD8⁺ PCAECTCL, 1 with MEITL, and 13 with other eligible, but undetermined PTCL subtypes.

Overall Safety

TEAE/TRAE summary, %	PTCL (N = 133)	TEAE/TRAE summary, %	PTCL (N = 133)
TEAEs	96.2	TEAEs leading to death	11.3
TRAFs	79 7	TRAEs leading to death	0
	10.1	TEAEs leading to discontinuation	9.8
Grade ≥ 3 TEAEs	57.9	TRAEs leading to discontinuation	6.8
Grade ≥ 3 TRAEs	36.8	TEAEs leading to dose reduction	15.8
Serious TEAEs	39.8	TRAEs leading to dose reduction	12.0
Serious TRAEs	6.8	TEAEs leading to dose interruption	49.6
		TRAEs leading to dose interruption	31.6

Common TEAEs (Occurring in ≥ 15% of Patients) and Dose Modifications

- Cytopenias were common, and were manageable with dose modifications and/or supportive therapies such as transfusions and G-CSF
 - Thrombocytopenia was the most frequent any grade (49.6%) and grade ≥ 3 (23.3%) TEAE
 - The median time to first onset of platelet count $< 50 \times 10^9$ /L was 18 days from the first dose and the median time to recovery was 12 days
- 2 patients developed secondary AML and discontinued treatment

Data cutoff: May 5, 2023.

^a TEAEs included that led to treatment interruption in ≥ 5% of patients.^b Thrombocytopenia includes platelet count decrease.^c Anemia includes hemoglobin decrease, and red blood cell count decrease.

^d Neutropenia includes neutrophil count decrease.

AML, acute myeloid leukemia; G-CSF, granulocyte colony stimulating factor.

- Valemetostat demonstrated a high response rate and durable responses in patients with R/R PTCL, who have limited treatment options
 - Responses were observed across all PTCL subtypes
 - 10 (8.4%) patients treated with valemetostat proceeded to allo-HCT
- Valemetostat demonstrated an acceptable safety profile in patients with R/R PTCL
 - The most common any grade/grade ≥ 3 TEAEs were cytopenias, and most TEAEs were manageable with patients rarely discontinuing treatment
- The VALENTINE-PTCL01 study demonstrated that valemetostat monotherapy is tolerable, and provides a clinically meaningful benefit for patients with R/R PTCL

Acknowledgements

- The authors thank the patients, families, and caregivers for their participation, and the study staff for their contributions
- This study is sponsored by Daiichi Sankyo Co., Ltd
- Editorial support was provided by Declan Grewcock, PhD, of Excerpta Medica, funded by Daiichi Sankyo Co., Ltd, and in accordance with Good Publication Practice (GPP) guidelines
- The authors thank the following investigators for contributing to patient enrolment and study design

Ana Marín-Niebla Antonio Pinto Bradley Haverkos Carlo Gambacorti-Passerini Daisuke Ennishi Francine Foss Franck Morschhauser Graham Collins Guillermo Rodríguez Garcia Hirokazu Nagai Jasmine Zain Jia Ruan Junya Kuroda Loic Ysebaert Miles Prince Ming-Chung Wang Nabila Bennani-Baiti Nobuhiko Yamauchi Pier Luigi Porcu Ranjana Advani Tai-Chung Huang Tatyana Feldman Thomas Weber Tsai-Yun Chen Weiyun Ai Won Seog Kim

Copies of this poster or presentation obtained through quick response (QR) code or https://bit.ly/DSIASH2023 are for personal use only and may not be reproduced without permission from the author of this material.

• Thank you also to central pathologist, Jose Cabecadas